Please wait a minute...
金属学报  2021, Vol. 57 Issue (12): 1637-1644    DOI: 10.11900/0412.1961.2020.00412
  研究论文 本期目录 | 过刊浏览 |
Sm2Co17磁体胞状组织边缘2:17R'相的透射电子显微镜表征
陈虹宇1, 宋欣1, 周相龙1, 贾文涛1, 袁涛1,2, 马天宇1()
1.西安交通大学 前沿科学技术研究院 金属材料强度国家重点实验室 西安 710049
2.西南应用磁学所 绵阳 621000
Identification of 2:17R' Cell Edge Phase in Sm2Co17-Type Permanent Magnets by Transmission Electron Microscopy
CHEN Hongyu1, SONG Xin1, ZHOU Xianglong1, JIA Wentao1, YUAN Tao1,2, MA Tianyu1()
1.Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
2.The Southwest Applied Magnetism Research Institute, Mianyang 621000, China
引用本文:

陈虹宇, 宋欣, 周相龙, 贾文涛, 袁涛, 马天宇. Sm2Co17磁体胞状组织边缘2:17R'相的透射电子显微镜表征[J]. 金属学报, 2021, 57(12): 1637-1644.
Hongyu CHEN, Xin SONG, Xianglong ZHOU, Wentao JIA, Tao YUAN, Tianyu MA. Identification of 2:17R' Cell Edge Phase in Sm2Co17-Type Permanent Magnets by Transmission Electron Microscopy[J]. Acta Metall Sin, 2021, 57(12): 1637-1644.

全文: PDF(3253 KB)   HTML
摘要: 

结合电子衍射、TEM明/暗场像和HRTEM像从[100]2:17R和[101]2:17R 2个晶带轴研究了具有纳米胞状组织的Sm25Co50.2Fe16.2Cu5.6Zr3.0 (质量分数,%)钉扎型磁体胞边缘的微结构。结果表明,胞状组织边缘存在菱方结构的2:17R'相,与ABCA 3层堆垛周期的2:17R相相比有一层{001}基面原子错排,造成畴壁能密度高于胞内的2:17R相,从而产生不利于方形度的排斥型畴壁钉扎。进一步的对比研究表明,2:17R'相的超晶格衍射斑点可覆盖实验观察到的所有卫星斑,排除了之前文献中根据部分卫星斑所认为的2:17H相或Smn + 1Co5n - 1相。因此,本工作为理解Sm2(Co, M)17磁体方形度低的微结构根源提供了新证据。

关键词 永磁材料Sm-Co磁体电子衍射缺陷TEM表征    
Abstract

Pinning-controlled Sm2(Co, M)17 (M = Fe, Cu, and Zr) magnets with cellular nanostructures are the strongest high-temperature permanent magnets. The squareness factor of such magnets is smaller than those of nucleation-controlled permanent magnets, leading to a lower-than-ideal maximum energy product. One of the main reasons for this poor squareness is that the pinning strength is weaker at cell edges than at 1:5H cell boundaries. However, the structure of these edges remains a topic of debate. To identify the microstructure of cell edges, electron diffraction, TEM bright/dark field imaging, and HRTEM imaging on a model magnet Sm25Co50.2Fe16.2Cu5.6Zr3.0 (mass fraction, %) were performed using both [100]2:17R and [101]2:17R zone axes. The results revealed a rhombohedral 2:17R' phase at some of the edges, with one faulting basal layer in the 2:17R lattice. Further comparative investigations revealed that all the extra superlattice reflections result from the 2:17R' phase, excluding the previously identified 2:17H or Smn + 1Co5n - 1 or their mixture that can only produce a part of such superlattice reflections. Owing to the 2:17R' phase with a faulted basal plane, the free energy at the cell edges is higher than that of the 2:17R cell interiors, leading to repulsive domain-wall-pinning unfavorable for the squareness factor. This study provides important evidence for understanding the microstructural origin of the poor squareness factor obtained for Sm2(Co, M)17 permanent magnets.

Key wordspermanent magnet    Sm-Co magnet    electron diffraction    defect    TEM characterization
收稿日期: 2020-10-16     
ZTFLH:  TG113.12  
基金资助:国家自然科学基金项目(52071256);金属材料强度国家重点实验室开放课题项目(20192106)
作者简介: 陈虹宇,女,1993年生,硕士
图1  沿Sm25Co50.2Fe16.2Cu5.6Zr3.0磁体[100]2:17R和[101]2:17R晶带轴的TEM明、暗场像及选区电子衍射(SAED)花样
图2  Sm25Co50.2Fe16.2Cu5.6Zr3.0磁体微结构的HRTEM表征
图3  2:17H、1:5H、1:3R、2:7R和5:19R相沿平行于[100]2:17R和[101]2:17R晶带轴的模拟电子衍射花样
图4  Sm25Co42.9Fe23.5Cu5.6Zr3.0磁体中1:3R和2:7R相的TEM表征
图5  2:17R和2:17R'相的单胞、原子投影图和模拟的电子衍射花样
图6  修正的畴壁能密度分布示意图
1 Ojima T, Tomizawa S, Yoneyama T, et al. Magnetic properties of a new type of rare-earth cobalt magnets Sm2(Co, Cu, Fe, M)17 [J]. IEEE Trans. Magn., 1977, 13: 1317
2 Buschow K H J. New developments in hard magnetic materials [J]. Rep. Prog. Phys., 1991, 54: 1123
3 Zhu M G, Sun W, Fang Y K, et al. The research progress and status of Sm-Co permanent magnet materials [J]. Mater. China, 2015, 34: 789
3 朱明刚, 孙 威, 方以坤等. Sm2Co17基永磁材料的研究进展 [J]. 中国材料进展, 2015, 34: 789
4 Liu J P, Fullerton E, Gutfleisch O, et al. Nanoscale Magnetic Materials and Applications [M]. New York: Springer, 2009: 337
5 Coey J M D. Permanent magnets: Plugging the gap [J]. Scr. Mater., 2012, 67: 524
6 Strnat K J. The hard-magnetic properties of rare earth-transition metal alloys [J]. IEEE Trans. Magn., 1972, 8: 511
7 Horiuchi Y, Hagiwara M, Endo M, et al. Influence of intermediate-heat treatment on the structure and magnetic properties of iron-rich Sm(Co, Fe, Cu, Zr)z sintered magnets [J]. J. Appl. Phys., 2015, 117: 17C704
8 Goll D, Kronmüller H, Stadelmaier H H. Micromagnetism and the microstructure of high-temperature permanent magnets [J]. J. Appl. Phys., 2004, 96: 6534
9 Skomski R. Domain-wall curvature and coercivity in pinning type Sm-Co magnets [J]. J. Appl. Phys., 1997, 81: 5627
10 Katter M, Weber J, Assmus W, et al. A new model for the coercivity mechanism of Sm2(Co, Fe, Cu, Zr)17 magnets [J]. IEEE Trans. Magn., 1996, 32: 4815
11 Kronmüller H, Goll D. Micromagnetic analysis of pinning-hardened nanostructured, nanocrystalline Sm2Co17 based alloys [J]. Scr. Mater., 2002, 47: 545
12 Gong S T, Jiang C B, Zhang T L. Effect of Fe on microstructure and coercivity of SmCo-based magnets [J]. Acta Metall. Sin., 2017, 53: 726
12 巩劭廷, 蒋成保, 张天丽. Fe对SmCo基高温永磁体微观结构及矫顽力的影响 [J]. 金属学报, 2017, 53: 726
13 Xiong X Y, Ohkubo T, Koyama T, et al. The microstructure of sintered Sm(Co0.72Fe0.20Cu0.055Zr0.025)7.5 permanent magnet studied by atom probe [J]. Acta Mater., 2004, 52: 737
14 Xia W, He Y K, Huang H B, et al. Initial irreversible losses and enhanced high-temperature performance of rare-earth permanent magnets [J]. Adv. Funct. Mater., 2019, 29: 1900690
15 Xu C, Wang H, Zhang T L, et al. Correlation of microstructure and magnetic properties in Sm(CobalFe0.1Cu0.1Zr0.033)6.93 magnets solution-treated at different temperatures [J]. Rare Met., 2019, 38: 20
16 Guo Z H, Li W. Room- and high-temperature magnetic properties of Sm(CobalFexCu0.088Zr0.025)7.5 (x = 0-0.30) sintered magnets [J]. Acta Metall. Sin., 2002, 38: 866
16 郭朝晖, 李 卫. Sm(CobalFexCu0.088Zr0.025)7.5 (x = 0~0.30)烧结永磁体的磁性及其高温特性 [J]. 金属学报, 2002, 38: 866
17 Machida H, Fujiwara T, Kamada R, et al. The high squareness Sm-Co magnet having Hcb = 10.6 kOe at 150oC [J]. AIP Adv., 2017, 7: 056223
18 Zhou X L, Song X, Jia W T, et al. Identifications of SmCo5 and Smn + 1Co5n - 1-type phases in 2:17-type Sm-Co-Fe-Cu-Zr permanent magnets [J]. Scr. Mater., 2020, 182: 1
19 Wang Y Q, Yue M, Wu D, et al. Microstructure modification induced giant coercivity enhancement in Sm(CoFeCuZr)z permanent magnets [J]. Scr. Mater., 2018, 146: 231
20 Yan G H, Xia W X, Liu Z, et al. Effect of grain boundary on magnetization behaviors in 2:17 type SmCo magnet [J]. J. Magn. Magn. Mater., 2019, 489: 165459
21 Rabenberg L, Mishra R K, Thomas G. Microstructures of precipitation-hardened SmCo permanent magnets [J]. J. Appl. Phys., 1982, 53: 2389
22 Duerrschnabel M, Yi M, Uestuener K, et al. Atomic structure and domain wall pinning in samarium-cobalt-based permanent magnets [J]. Nat. Commun., 2017, 8: 54
23 Horiuchi Y, Hagiwara M, Okamoto K, et al. Effect of pre-aging treatment on the microstructure and magnetic properties of Sm(Co, Fe, Cu, Zr)7.8 sintered magnets [J]. Mater. Trans., 2014, 55: 482
24 Fidler J, Skalicky P, Rothwarf F. High resolution electron microscope study of Sm(Co, Fe, Cu, Zr)7.5 magnets [J]. IEEE Trans. Magn., 1983, 19: 2041
25 Maury C, Rabenberg L, Allibert C H. Genesis of the cell microstructure in the Sm(Co, Fe, Cu, Zr) permanent magnets with 2:17 type [J]. Phys. Status. Solidi, 1993, 140A: 57
26 Feng H B, Chen H S, Guo Z H, et al. Twinning structure in Sm(Co, Fe, Cu, Zr)z permanent magnet [J]. Intermetallics, 2010, 18: 1067
27 Delannay F, Derkaoui S, Allibert C H. The influence of zirconium on Sm(CoFeCuZr)7.2 alloys for permanent magnets I: Identification of the phases by transmission electron microscopy [J]. J. Less-Common. Met., 1987, 134: 249
28 Xu C, Wang H, Liu B J, et al. The formation mechanism of 1:5H phase in Sm(Co, Fe, Cu, Zr)z melt-spun ribbons with high iron content [J]. J. Magn. Magn. Mater., 2020, 496: 165939
29 Song X, Zhou X L, Yuan T, et al. Role of nanoscale interfacial defects on magnetic properties of the 2:17-type Sm-Co permanent magnets [J]. J. Alloys Compd., 2020, 816: 152620
30 Jia W T, Zhou X L, Xiao A D, et al. Defects-aggregated cell boundaries induced domain wall curvature change in Fe-rich Sm-Co-Fe-Cu-Zr permanent magnets [J]. J. Mater. Sci., 2020, 55: 13258
31 Song X, Ma T Y, Zhou X L, et al. Atomic scale understanding of the defects process in concurrent recrystallization and precipitation of Sm-Co-Fe-Cu-Zr alloys [J]. Acta Mater., 2021, 202: 290
32 Song X, Liu Y, Xiao A D, et al. Cell-boundary-structure controlled magnetic-domain-wall-pinning in 2:17-type Sm-Co-Fe-Cu-Zr permanent magnets [J]. Mater. Charact., 2020, 169: 110575
33 Rabenberg L, Mishra R, Thomas G. Development of the cellular microstructure in the SmCo7.4-type magnets [A]. The Proceeding 6th International Workshop on Rare Earth-Cobalt Permanent Magnets and Their Applications [C]. Australia: JOSEF FIDLER, Druckerei Lischkar & Co A-1120 Vienna, 1982: 599
34 Chen H S, Wang Y Q, Yao Y, et al. Attractive-domain-wall-pinning controlled Sm-Co magnets overcome the coercivity-remanence trade-off [J]. Acta Mater., 2019, 164: 196
35 Tian Y, Liu Z, Xu H, et al. In situ observation of domain wall pinning in Sm(Co, Fe, Cu, Zr)z magnet by Lorentz microscopy [J]. IEEE Trans. Magn., 2015, 51: 2102404
[1] 戚钊, 王斌, 张鹏, 刘睿, 张振军, 张哲峰. 应力比对含缺陷选区激光熔化TC4合金稳态疲劳裂纹扩展速率的影响[J]. 金属学报, 2023, 59(10): 1411-1418.
[2] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[3] 张金钰, 屈启蒙, 王亚强, 吴凯, 刘刚, 孙军. 金属/高熵合金纳米多层膜的力学性能及其辐照效应研究进展[J]. 金属学报, 2022, 58(11): 1371-1384.
[4] 刘仲武, 何家毅. 钕铁硼永磁晶界扩散技术和理论发展的几个问题[J]. 金属学报, 2021, 57(9): 1155-1170.
[5] 安旭东, 朱特, 王茜茜, 宋亚敏, 刘进洋, 张鹏, 张钊宽, 万明攀, 曹兴忠. 奥氏体316不锈钢中位错与氢的相互作用机理[J]. 金属学报, 2021, 57(7): 913-920.
[6] 易晓鸥, 韩文妥, 刘平平, FERRONIFrancesco, 詹倩, 万发荣. 金属W中辐照缺陷的产生、演化与热回复机制[J]. 金属学报, 2021, 57(3): 257-271.
[7] 刘健, 彭钦, 谢建新. 选区激光熔化René 88DT高温合金的晶粒组织及冶金缺陷调控[J]. 金属学报, 2021, 57(2): 191-204.
[8] 孙晓峰, 宋巍, 梁静静, 李金国, 周亦胄. 激光增材制造高温合金材料与工艺研究进展[J]. 金属学报, 2021, 57(11): 1471-1483.
[9] 张壮, 李海洋, 周蕾, 刘华松, 唐海燕, 张家泉. 齿轮钢铸态点状偏析及其在热轧棒材中的演变[J]. 金属学报, 2021, 57(10): 1281-1290.
[10] 盛鹰, 贾彬, 王汝恒, 陈国平. 一种原子尺度应变定义方法及其在识别微观缺陷演化中的应用[J]. 金属学报, 2020, 56(8): 1144-1154.
[11] 马德新,王富,徐维台,徐文梁,赵运兴. 高温合金单晶铸件中条纹晶的形成机制[J]. 金属学报, 2020, 56(3): 301-310.
[12] 马小强,杨坤杰,徐喻琼,杜晓超,周建军,肖仁政. 金属Nb级联碰撞的分子动力学模拟[J]. 金属学报, 2020, 56(2): 249-256.
[13] 谭海兵, 黄烁, 王静, 李姝, 朱昌洪, 钟燕, 钟世林, 何爱杰. 白斑缺陷对GH4586合金组织和力学性能的影响[J]. 金属学报, 2020, 56(10): 1411-1422.
[14] 张健,王莉,王栋,谢光,卢玉章,申健,楼琅洪. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55(9): 1077-1094.
[15] 吴正凯, 吴圣川, 张杰, 宋哲, 胡雅楠, 康国政, 张海鸥. 基于同步辐射X射线成像的选区激光熔化Ti-6Al-4V合金缺陷致疲劳行为[J]. 金属学报, 2019, 55(7): 811-820.