Please wait a minute...
金属学报  2021, Vol. 57 Issue (11): 1343-1361    DOI: 10.11900/0412.1961.2021.00357
  综述 本期目录 | 过刊浏览 |
机器学习在材料研发中的应用
谢建新1(), 宿彦京1(), 薛德祯2, 姜雪1, 付华栋1, 黄海友1
1.北京科技大学 新材料技术研究院 北京材料基因工程高精尖创新中心 北京 100083
2.西安交通大学 金属材料强度国家重点实验室 西安 710049
Machine Learning for Materials Research and Development
XIE Jianxin1(), SU Yanjing1(), XUE Dezhen2, JIANG Xue1, FU Huadong1, HUANG Haiyou1
1.Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
2.State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
引用本文:

谢建新, 宿彦京, 薛德祯, 姜雪, 付华栋, 黄海友. 机器学习在材料研发中的应用[J]. 金属学报, 2021, 57(11): 1343-1361.
Jianxin XIE, Yanjing SU, Dezhen XUE, Xue JIANG, Huadong FU, Haiyou HUANG. Machine Learning for Materials Research and Development[J]. Acta Metall Sin, 2021, 57(11): 1343-1361.

全文: PDF(3475 KB)   HTML
摘要: 

大数据和人工智能技术的快速发展推动数据驱动的材料研发快速发展成为变革传统试错法的新模式,即所谓的材料研发第四范式。新模式将大幅度提升材料研发效率和工程化应用水平,推动新材料快速发展。本文聚焦机器学习辅助材料研发这一新兴领域,以材料预测和优化设计为主线,在简述材料特征构建与筛选的基础上,综述了机器学习在材料相结构、显微组织、成分-工艺-性能、服役行为预测等方面的研究进展;针对材料数据样本量少、噪音高、质量差,以及新材料探索空间巨大的特点,综述了机器学习模型与优化算法和策略融合,在新材料优化设计中的研究进展和典型应用。最后,讨论了机器学习在材料领域的发展机遇和挑战,展望了发展前景。

关键词 材料数据数据挖掘机器学习材料设计材料基因工程    
Abstract

The rapid advancement of big data and artificial intelligence has resulted in new data-driven materials research and development (R&D), which has achieved substantial progress. This fourth paradigm is believed to improve materials design efficiency and industrialized application and stimulate the discovery of new materials. The focus of this work is on the emerging field of machine learning-assisted material R&D, with an emphasis on machine learning predictions and optimization design. Following a brief description of feature construction and selection, recent developments in material predictions on phases/structures, processing-structure-property relationships, microstructure, and material performance are reviewed. This paper also summarizes the research progress on optimization algorithms with machine learning models, which is expected to overcome the bottlenecks such as the small size and high noise level of material data samples and huge space for exploration. The challenges and future opportunities for machine learning applications in materials R&D are discussed and prospected.

Key wordsmaterials data    data mining    machine learning    material design    material genome engineering
收稿日期: 2021-08-25     
ZTFLH:  TP181  
图1  材料高通量实验结合机器学习预测镍基高温合金的有害相[19]
图2  融合显微组织深度学习的钢铁材料组织和性能设计流程[45]
图3  相变诱导塑性(TRIP)钛合金力学性能的机器学习流程[60]
图4  从可解释机器学习中提取到决策树和回归模型[78]
图5  高熵合金固溶强化模型精度(MRE)的对比[80](a) the new model (b) S-model (c) T-model (d) V-model(e) comparison of predicted and experimental solid solution strength (ΔσSSS) (f) the revised model
图6  机器学习模型与遗传算法结合的新钢种设计策略[116]
图7  逐层筛选多目标优化策略设计钴基高温合金流程[117]
图8  基于材料因子和Bayesian优化的沉淀硬化铜合金多目标设计策略[123]
图9  多目标转化为单目标优化的方法[124]
图10  Pareto前沿优化示意图
图11  多目标Bayesian优化框架[128]
图12  编码与解码设计流程[135]
图13  机器学习设计系统(MLDS)[140]
1 Agrawal A, Choudhary A. Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in materials science [J]. APL Mater., 2016, 4: 053208
2 Su Y J, Fu H D, Bai Y, et al. Progress in materials genome engineering in China [J]. Acta Metall. Sin., 2020, 56: 1313
2 宿彦京, 付华栋, 白 洋等. 中国材料基因工程研究进展 [J]. 金属学报, 2020, 56: 1313
3 Hart G L W, Mueller T, Toher C, et al. Machine learning for alloys [J]. Nat. Rev. Mater., 2021, 6: 730
4 Lookman T, Balachandran P V, Xue D Z, et al. Active learning in materials science with emphasis on adaptive sampling using uncertainties for targeted design [J]. npj Comput. Mater., 2019, 5: 21
5 Schmidt J, Marques M R G, Botti S, et al. Recent advances and applications of machine learning in solid-state materials science [J]. npj Comput. Mater., 2019, 5: 83
6 Liu Y L, Niu C, Wang Z, et al. Machine learning in materials genome initiative: A review [J]. J. Mater. Sci. Technol., 2020, 57: 113
7 Chen C, Zuo Y X, Ye W K, et al. A critical review of machine learn-ing of energy materials [J]. Adv. Energy Mater., 2020, 10: 1903242
8 Ramprasad R, Batra R, Pilania G, et al. Machine learning in materials informatics: Recent applications and prospects [J]. npj Comput. Mater., 2017, 3: 54
9 Batra R, Song L, Ramprasad R. Emerging materials intelligence ecosystems propelled by machine learning [J]. Nat. Rev. Mater., 2021, 6: 655
10 Rickman J M, Lookman T, Kalinin S V. Materials informatics: From the atomic-level to the continuum [J]. Acta Mater., 2019, 168: 473
11 Ward L, Aykol M, Blaiszik B, et al. Strategies for accelerating the adoption of materials informatics [J]. MRS Bull., 2018, 43: 683
12 Song Z L, Chen X W, Meng F B, et al. Machine learning in materials design: Algorithm and application [J]. Chin. Phys., 2020, 29 B: 116103
13 Zhang H T, Fu H D, He X Q, et al. Dramatically enhanced combina-tion of ultimate tensile strength and electric conductivity of alloys via machine learning screening [J]. Acta Mater., 2020, 200: 803
14 Pattanayak S, Dey S, Chatterjee S, et al. Computational intelligence based designing of microalloyed pipeline steel [J]. Comput. Mater. Sci., 2015, 104: 60
15 Weng B C, Song Z L, Zhu R L, et al. Simple descriptor derived from symbolic regression accelerating the discovery of new perovskite catalysts [J]. Nat. Commun., 2020, 11: 3513
16 Wang X X, Wang C X, Ci S N, et al. Accelerating 2D MXene catalyst discovery for the hydrogen evolution reaction by computer-driven workflow and an ensemble learning strategy [J]. J. Mater. Chem., 2020, 8A: 23488
17 Oliynyk A O, Antono E, Sparks T D, et al. High-throughput machine-learning-driven synthesis of Full-Heusler compounds [J]. Chem. Mater., 2016, 28: 7324
18 Pilania G, Mannodi-Kanakkithodi A, Uberuaga B P, et al. Machine learning bandgaps of double perovskites [J]. Sci. Rep., 2016, 6: 19375
19 Qin Z J, Wang Z, Wang Y Q, et al. Phase prediction of Ni-base superalloys via high-throughput experiments and machine learning [J]. Mater. Res. Lett., 2021, 9: 32
20 Zou M, Li W D, Li L F, et al. Machine learning assisted design approach for developing γ′-strengthened Co-Ni-base superalloys [A]. Superalloys2020 [M]. Cham: Springer, 2020: 937
21 Yu J X, Guo S, Chen Y C, et al. A two-stage predicting model for γ′ solvus temperature of L12-strengthened Co-base superalloys based on machine learning [J]. Intermetallics, 2019, 110: 106466
22 Li Y, Guo W L. Machine-learning model for predicting phase forma-tions of high-entropy alloys [J]. Phys. Rev. Mater., 2019, 3: 095005
23 Zhou Z Q, Zhou Y J, He Q F, et al. Machine learning guided appraisal and exploration of phase design for high entropy alloys [J]. npj Comput. Mater., 2019, 5: 128
24 Kaufmann K, Vecchio K S. Searching for high entropy alloys: A machine learning approach [J]. Acta Mater., 2020, 198: 178
25 Lee S Y, Byeon S, Kim H S, et al. Deep learning-based phase prediction of high-entropy alloys: Optimization, generation, and explanation [J]. Mater. Des., 2021, 197: 109260
26 Risal S, Zhu W H, Guillen P, et al. Improving phase prediction accuracy for high entropy alloys with machine learning [J]. Comput. Mater. Sci., 2021, 192: 110389
27 Roy A, Balasubramanian G. Predictive descriptors in machine learning and data-enabled explorations of high-entropy alloys [J]. Comput. Mater. Sci., 2021, 193: 110381
28 Krishna Y V, Jaiswal U K, Rahul M R. Machine learning approach to predict new multiphase high entropy alloys [J]. Scr. Mater., 2021, 197: 113804
29 Jaiswal U K, Krishna Y V, Rahul M R, et al. Machine learning-enabled identification of new medium to high entropy alloys with solid solution phases [J]. Comput. Mater. Sci., 2021, 197: 110623
30 Yan Y G, Lu D, Wang K. Accelerated discovery of single-phase refractory high entropy alloys assisted by machine learning [J]. Comput. Mater. Sci., 2021, 199: 110723
31 Huang W J, Martin P, Zhuang H L. Machine-learning phase prediction of high-entropy alloys [J]. Acta Mater., 2019, 169: 225
32 Zhang Y, Wen C, Wang C X, et al. Phase prediction in high entropy alloys with a rational selection of materials descriptors and machine learning models [J]. Acta Mater., 2020, 185: 528
33 Xiong J, Zhang T Y, Shi S Q. Machine learning prediction of elastic properties and glass-forming ability of bulk metallic glasses [J]. MRS Commun., 2019, 9: 576
34 Xiong J, Shi S Q, Zhang T Y. Machine learning prediction of glass-forming ability in bulk metallic glasses [J]. Comput. Mater. Sci., 2021, 192: 110362
35 Xiong J, Shi S Q, Zhang T Y. A machine-learning approach to predicting and understanding the properties of amorphous metallic alloys [J]. Mater. Des., 2020, 187: 108378
36 Ward L, O'Keeffe S C, Stevick J, et al. A machine learning approach for engineering bulk metallic glass alloys [J]. Acta Mater., 2018, 159: 102
37 Tripathi M K, Chattopadhyay P P, Ganguly S. Multivariate analysis and classification of bulk metallic glasses using principal component analysis [J]. Comput. Mater. Sci., 2015, 107: 79
38 Sun Y T, Bai H Y, Li M Z, et al. Machine learning approach for prediction and understanding of glass-forming ability [J]. J. Phys. Chem. Lett., 2017, 8: 3434
39 Laws K J, Miracle D B, Ferry M. A predictive structural model for bulk metallic glasses [J]. Nat. Commun., 2015, 6: 8123
40 Cai A H, Xiong X, Liu Y, et al. Artificial neural network modeling for undercooled liquid region of glass forming alloys [J]. Comput. Mater. Sci., 2010, 48: 109
41 Ren F, Ward L, Williams T, et al. Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments [J]. Sci. Adv., 2018, 4: eaaq1566
42 Li Y P, Liu Y Y, Luo S H, et al. Neural network model for correlating microstructural features and hardness properties of nickel-based superalloys [J]. J. Mater. Res. Technol., 2020, 9: 14467
43 Fu C, Chen Y D, Li L F, et al. Evaluation of service conditions of high pressure turbine blades made of DS Ni-base superalloy by artificial neural networks [J]. Mater. Today Commun., 2020, 22: 100838
44 Jiang X, Yin H Q, Zhang C, et al. An materials informatics approach to Ni-based single crystal superalloys lattice misfit prediction [J]. Comput. Mater. Sci., 2018, 143: 295
45 Jung I D, Shin D S, Kim D, et al. Artificial intelligence for the prediction of tensile properties by using microstructural parameters in high strength steels [J]. Materialia, 2020, 11: 100699
46 Gebhardt C, Trimborn T, Weber F, et al. Simplified ResNet approach for data driven prediction of microstructure-fatigue relationship [J]. Mech. Mater., 2020, 151: 103625
47 Herriott C, Spear A D. Predicting microstructure-dependent mechanical properties in additively manufactured metals with machine- and deep-learning methods [J]. Comput. Mater. Sci., 2020, 175: 109599
48 Kondo R, Yamakawa S, Masuoka Y, et al. Microstructure recognition using convolutional neural networks for prediction of ionic conductivity in ceramics [J]. Acta Mater., 2017, 141: 29
49 Wang C C, Shen C G, Cui Q, et al. Tensile property prediction by feature engineering guided machine learning in reduced activation ferritic/martensitic steels [J]. J. Nucl. Mater., 2020, 529: 151823
50 Guo S, Yu J X, Liu X J, et al. A predicting model for properties of steel using the industrial big data based on machine learning [J]. Comput. Mater. Sci., 2019, 160: 95
51 Ozerdem M S, Kolukisa S. Artificial neural network approach to predict mechanical properties of hot rolled, nonresulfurized, AISI 10xx series carbon steel bars [J]. J. Mater. Process. Technol., 2008, 199: 437
52 Guo Z L, Sha W D. Modelling the correlation between processing parameters and properties of maraging steels using artificial neural network [J]. Comput. Mater. Sci., 2004, 29: 12
53 Li X Y, Roth C C, Mohr D. Machine-learning based temperature- and rate-dependent plasticity model: Application to analysis of fracture experiments on DP steel [J]. Int. J. Plast., 2019, 118: 320
54 Xu X N, Wang L Y, Zhu G M, et al. Predicting tensile properties of AZ31 magnesium alloys by machine learning [J]. JOM, 2020, 72: 3935
55 Liu B, Tang A T, Pan F S, et al. Mechanical property prediction model of AZ31 magnesium alloys based on an artificial neural network with parameter optimization [J]. J. Chongqing Univ., 2011, 34(3): 44
55 刘 彬, 汤爱涛, 潘复生等. 基于参数优化的人工神经网络的AZ31镁合金力学性能预测模型 [J]. 重庆大学学报, 2011, 34(3): 44
56 Li N, Zhao S Y, Zhang Z G. Property prediction of medical magnesium alloy based on machine learning [A]. Proceedings of the 2021 IEEE 6th International Conference on Big Data Analytics (ICBDA) [C]. Xiamen, IEEE, 2021: 51
57 Chaudry U M, Hamad K, Abuhmed T. Machine learning-aided design of aluminum alloys with high performance [J]. Mater. Today Commun., 2021, 26: 101897
58 Cao X Y, Zhang Y B, Chen H. Predicting mechanical properties and corrosion resistance of heat-treated 7N01 aluminum alloy by machine learning methods [J]. IOP Conf. Ser.: Mater. Sci. Eng., 2020, 774: 012030
59 Malinov S, Sha W, Mckeown J J. Modelling the correlation between processing parameters and properties in titanium alloys using artificial neural network [J]. Comput. Mater. Sci., 2001, 21: 375
60 Oh J M, Narayana P L, Hong J K, et al. Property optimization of TRIP Ti alloys based on artificial neural network [J]. J. Alloys Compd., 2021, 884: 161029
61 Yang F, Li Z, Wang Q, et al. Cluster-formula-embedded machine learning for design of multicomponent β-Ti alloys with low Young's modulus [J]. npj Comput. Mater., 2020, 6: 101
62 Wu C T, Chang H T, Wu C Y, et al. Machine learning recommends affordable new Ti alloy with bone-like modulus [J]. Mater. Today, 2020, 34: 41
63 Xia X, Nie J F, Davies C H J, et al. An artificial neural network for predicting corrosion rate and hardness of magnesium alloys [J]. Mater. Des., 2016, 90: 1034
64 Wen Y F, Cai C Z, Liu X H, et al. Corrosion rate prediction of 3C steel under different seawater environment by using support vector regression [J]. Corros. Sci., 2009, 51: 349
65 Fang S F, Wang M P, Qi W H, et al. Hybrid genetic algorithms and support vector regression in forecasting atmospheric corrosion of metallic materials [J]. Comput. Mater. Sci., 2008, 44: 647
66 Cavanaugh M K, Buchheit R G, Birbilis N. Modeling the environmental dependence of pit growth using neural network approaches [J]. Corros. Sci., 2010, 52: 3070
67 Diao Y P, Yan L C, Gao K W. Improvement of the machine learning-based corrosion rate prediction model through the optimization of input features [J]. Mater. Des., 2021, 198: 109326
68 Shi J B, Wang J H, Macdonald D D. Prediction of primary water stress corrosion crack growth rates in Alloy 600 using artificial neural networks [J]. Corros. Sci., 2015, 92: 217
69 Agrawal A, Deshpande P D, Cecen A, et al. Exploration of data science techniques to predict fatigue strength of steel from composition and processing parameters [J]. Integr. Mater. Manuf. Innov., 2014, 3: 90
70 Kamble R G, Raykar N R, Jadhav D N. Machine learning approach to predict fatigue crack growth [J]. Mater. Today: Proc., 2021, 38: 2506
71 He L, Wang Z L, Akebono H, et al. Machine learning-based predictions of fatigue life and fatigue limit for steels [J]. J. Mater. Sci. Technol., 2021, 90: 9
72 Liu Y, Wu J M, Wang Z C, et al. Predicting creep rupture life of Ni-based single crystal superalloys using divide-and-conquer approach based machine learning [J]. Acta Mater., 2020, 195: 454
73 Shin D, Yamamoto Y, Brady M P, et al. Modern data analytics approach to predict creep of high-temperature alloys [J]. Acta Mater., 2019, 168: 321
74 Hu X B, Wang J C, Wang Y Y, et al. Two-way design of alloys for advanced ultra supercritical plants based on machine learning [J]. Comput. Mater. Sci., 2018, 155: 331
75 Kong C S, Luo W, Arapan S, et al. Information-theoretic approach for the discovery of design rules for crystal chemistry [J]. J. Chem. Inf. Model., 2012, 52: 1812
76 Xue D Z, Xue D Q, Yuan R H, et al. An informatics approach to transformation temperatures of NiTi-based shape memory alloys [J]. Acta Mater., 2017, 125: 532
77 Raccuglia P, Elbert K C, Adler P D F, et al. Machine-learning-assisted materials discovery using failed experiments [J]. Nature, 2016, 533: 73
78 Iwasaki Y, Sawada R, Stanev V, et al. Identification of advanced spin-driven thermoelectric materials via interpretable machine learning [J]. npj Comput. Mater., 2019, 5: 103
79 Wu Q F, Wang Z J, Hu X B, et al. Uncovering the eutectics design by machine learning in the Al-Co-Cr-Fe-Ni high entropy system [J]. Acta Mater., 2020, 182: 278
80 Wen C, Wang C X, Zhang Y, et al. Modeling solid solution strengthening in high entropy alloys using machine learning [J]. Acta Mater., 2021, 212: 116917
81 Si S P, Fan B J, Liu X W, et al. Study on strengthening effects of Zr-Ti-Nb-O alloys via high throughput powder metallurgy and data-driven machine learning [J]. Mater. Des., 2021, 206: 109777
82 Xie Q, Suvarna M, Li J L, et al. Online prediction of mechanical properties of hot rolled steel plate using machine learning [J]. Mater. Des., 2021, 197: 109201
83 Loftis C, Yuan K P, Zhao Y, et al. Lattice thermal conductivity prediction using symbolic regression and machine learning [J]. J. Phys. Chem., 2021, 125A: 435
84 Yuan F L, Mueller T. Identifying models of dielectric breakdown strength from high-throughput data via genetic programming [J]. Sci. Rep., 2017, 7: 17594
85 Wei Q H, Xiong J, Sun S, et al. Multi-objective machine learning of four mechanical properties of steels [J]. Sci. Sin. Technol., 2021, 51: 722
85 魏清华, 熊 杰, 孙 升等. 多目标机器学习钢的四种力学性能 [J]. 中国科学: 技术科学, 2021, 51: 722
86 Jones D R, Schonlau M, Welch W J. Efficient global optimization of expensive black-box functions [J]. J. Glob. Optim., 1998, 13: 455
87 de Jong M, Chen W, Notestine R, et al. A statistical learning framework for materials science: application to elastic moduli of k-nary inorganic polycrystalline compounds [J]. Sci. Rep., 2016, 6: 34256
88 Frazier P I. A tutorial on Bayesian optimization [J]. arXiv: 1807.02811, 2018
89 Xue D Z, Balachandran P V, Hogden J, et al. Accelerated search for materials with targeted properties by adaptive design [J]. Nat. Commun., 2016, 7: 11241
90 Wen C, Zhang Y, Wang C X, et al. Machine learning assisted design of high entropy alloys with desired property [J]. Acta Mater., 2019, 170: 109
91 Li J H, Zhang Y B, Cao X Y, et al. Accelerated discovery of high-strength aluminum alloys by machine learning [J]. Commun. Mater., 2020, 1: 73
92 Liu Y W, Wang L Y, Zhang H, et al. Accelerated development of high-strength magnesium alloys by machine learning [J]. Metall. Mater. Trans., 2021, 52A: 943
93 Zhao W C, Zheng C, Xiao B, et al. Composition refinement of 6061 aluminum alloy using active machine learning model based on bayesian optimization sampling [J]. Acta Metall. Sin., 2021, 57: 797
93 赵婉辰, 郑 晨, 肖 斌等. 基于Bayesian采样主动机器学习模型的6061铝合金成分精细优化 [J]. 金属学报, 2021, 57: 797
94 Xue D Z, Balachandran P V, Yuan R H, et al. Accelerated search for BaTiO3-based piezoelectrics with vertical morphotropic phase boundary using Bayesian learning [J]. Proc. Natl. Acad. Sci. USA, 2016, 113: 13301
95 Yuan R H, Liu Z, Balachandran P V, et al. Accelerated discovery of large electrostrains in BaTiO3-based piezoelectrics using active learnIng [J]. Adv. Mater., 2018, 30: 1702884
96 Yuan R H, Tian Y, Xue D Z, et al. Accelerated search for BaTiO3-based ceramics with large energy storage at low fields using machine learning and experimental design [J]. Adv. Sci., 2019, 6: 1901395
97 Verduzco J C, Marinero E E, Strachan A. An active learning approach for the design of doped LLZO ceramic garnets for battery applications [J]. Integr. Mater. Manuf. Innov., 2021, 10: 299
98 Nugraha A S, Lambard G, Na J, et al. Mesoporous trimetallic PtPdAu alloy films toward enhanced electrocatalytic activity in methanol oxidation: Unexpected chemical compositions discovered by Bayesian optimization [J]. J. Mater. Chem., 2020, 8A: 13532
99 Langner S, Häse F, Perea J D, et al. Beyond ternary OPV: High-throughput experimentation and self-driving laboratories optimize multicomponent systems [J]. Adv. Mater., 2020, 32: 1907801
100 Miyagawa S, Gotoh K, Kutsukake K, et al. Application of Bayesian optimization for improved passivation performance in TiOx/SiOy/c-Si heterostructure by hydrogen plasma treatment [J]. Appl. Phys. Express, 2021, 14: 025503
101 Haghanifar S, McCourt M, Cheng B L, et al. Creating glasswing butterfly-inspired durable antifogging superomniphobic supertransmissive, superclear nanostructured glass through Bayesian learning and optimization [J]. Mater. Horiz., 2019, 6: 1632
102 Attia P M, Grover A, Jin N, et al. Closed-loop optimization of fast-charging protocols for batteries with machine learning [J]. Nature, 2020, 578: 397
103 Wang X K, Rai N, Pereira B M P, et al. Accelerated knowledge discovery from omics data by optimal experimental design [J]. Nat. Commun., 2020, 11: 611
104 Ju S H, Shiga T, Feng L, et al. Designing nanostructures for phonon transport via Bayesian optimization [J]. Phys. Rev., 2017, 7X: 021024
105 Seko A, Maekawa T, Tsuda K, et al. Machine learning with systematic density-functional theory calculations: Application to melting temperatures of single- and binary-component solids [J]. Phys. Rev., 2014, 89B: 054303
106 Gubaev K, Podryabinkin E V, Hart G L W, et al. Accelerating high-throughput searches for new alloys with active learning of interatomic potentials [J]. Comput. Mater. Sci., 2019, 156: 148
107 Burger B, Maffettone P M, Gusev V V, et al. A mobile robotic chemist [J]. Nature, 2020, 583: 237
108 Gongora A E, Xu B W, Perry W, et al. A Bayesian experimental autonomous researcher for mechanical design [J]. Sci. Adv., 2020, 6: eaaz1708
109 Tian Y, Xue D Z, Yuan R H, et al. Efficient estimation of material property curves and surfaces via active learning [J]. Phys. Rev. Mater., 2021, 5: 013802
110 Tian Y, Yuan R H, Xue D Z, et al. Determining multi-component phase diagrams with desired characteristics using active learning [J]. Adv. Sci., 2021, 8: 2003165
111 Terayama K, Tamura R, Nose Y, et al. Efficient construction method for phase diagrams using uncertainty sampling [J]. Phys. Rev. Mater., 2019, 3: 033802
112 Dai C Y, Glotzer S C. Efficient phase diagram sampling by active learning [J]. J. Phys. Chem., 2020, 124B: 1275
113 Rickman J M, Chan H M, Harmer M P, et al. Materials informatics for the screening of multi-principal elements and high-entropy alloys [J]. Nat. Commun., 2019, 10: 2618
114 Cassar D R, Santos G G, Zanotto E D. Designing optical glasses by machine learning coupled with a genetic algorithm [J]. Ceram. Int., 2021, 47: 10555
115 Reddy N S, Krishnaiah J, Young H B, et al. Design of medium carbon steels by computational intelligence techniques [J]. Comput. Mater. Sci., 2015, 101: 120
116 Shen C G, Wang C C, Wei X L, et al. Physical metallurgy-guided machine learning and artificial intelligent design of ultrahigh-strength stainless steel [J]. Acta Mater., 2019, 179: 201
117 Liu P, Huang H Y, Antonov S, et al. Machine learning assisted design of γ′-strengthened Co-base superalloys with multi-performance optimization [J]. npj Comput. Mater., 2020, 6: 62
118 Yu J X, Wang C L, Chen Y C, et al. Accelerated design of L12-strengthened Co-base superalloys based on machine learning of experimental data [J]. Mater. Des., 2020, 195: 108996
119 Ashby M F. Multi-objective optimization in material design and selection [J]. Acta Mater., 2000, 48: 359
120 Yamawaki M, Ohnishi M, Ju S H, et al. Multifunctional structural design of graphene thermoelectrics by Bayesian optimization [J]. Sci. Adv., 2018, 4: eaar4192
121 Imanaka Y, Anazawa T, Kumasaka F, et al. Optimization of the composition in a composite material for microelectronics application using the Ising model [J]. Sci. Rep., 2021, 11: 3057
122 Nakamura K, Otani N, Koike T. Multi-objective Bayesian optimization of optical glass compositions [J]. Ceram. Int., 2021, 47: 15819
123 Zhang H T, Fu H D, Zhu S C, et al. Machine learning assisted composition effective design for precipitation strengthened copper alloys [J]. Acta Mater., 2021, 215: 117118
124 Chen Y F, Tian Y, Zhou Y M, et al. Machine learning assisted multi-objective optimization for materials processing parameters: A case study in Mg alloy [J]. J. Alloys Compd., 2020, 844: 156159
125 Menou E, Toda-Caraballo I, Rivera-Díaz-Del-Castillo P E J, et al. Evolutionary design of strong and stable high entropy alloys using multi-objective optimisation based on physical models, statistics and thermodynamics [J]. Mater. Des., 2018, 143: 185
126 Fang S F, Wang M P, Song M. An approach for the aging pro-cess optimization of AlZnMgCu series alloys [J]. Mater. Des., 2009, 30: 2460
127 Gopakumar A M, Balachandran P V, Xue D Z, et al. Multi-objective optimization for materials discovery via adaptive design [J]. Sci. Rep., 2018, 8: 3738
128 Solomou A, Zhao G, Boluki S, et al. Multi-objective Bayesian materials discovery: Application on the discovery of precipitation strengthened NiTi shape memory alloys through micromechanical modeling [J]. Mater. Des., 2018, 160: 810
129 Zunger A. Inverse design in search of materials with target functionalities [J]. Nat. Rev. Chem., 2018, 2: 0121
130 Butler K T, Davies D W, Cartwright H, et al. Machine learning for molecular and materials science [J]. Nature, 2018, 559: 547
131 Sanchez-Lengeling B, Aspuru-Guzik A. Inverse molecular design using machine learning: Generative models for matter engineering [J]. Science, 2018, 361: 360
132 Badrinarayanan V, Kendall A, Cipolla R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation [J]. IEEE Trans. Pattern Anal. Mach. Intell., 2017, 39: 2481
133 Cho K, Courville A, Bengio Y. Describing multimedia content using attention-based encoder-decoder networks [J]. IEEE Trans. Multimed., 2015, 17: 1875
134 Segler M H S, Preuss M, Waller M P. Planning chemical syntheses with deep neural networks and symbolic AI [J]. Nature, 2018, 555: 604
135 Gómez-Bombarelli R, Wei J N, Duvenaud D, et al. Automatic chemical design using a data-driven continuous representation of molecules [J]. ACS Cent. Sci., 2018, 4: 268
136 Noh J, Kim J, Stein H S, et al. Inverse design of solid-state materials via a continuous representation [J]. Matter, 2019, 1: 1370
137 Chun S, Roy S, Nguyen Y T, et al. Deep learning for synthetic microstructure generation in a materials-by-design framework for heterogeneous energetic materials [J]. Sci. Rep., 2020, 10: 13307
138 Kim B, Lee S, Kim J. Inverse design of porous materials using artificial neural networks [J]. Sci. Adv., 2020, 6: eaax9324
139 Jiang L, Wang C S, Fu H D, et al. Discovery of aluminum alloys with ultra-strength and high-toughness via a property-oriented design strategy [J]. J. Mater. Sci. Technol., 2022, 98: 33
140 Wang C S, Fu H D, Jiang L, et al. A property-oriented design strategy for high performance copper alloys via machine learning [J]. npj Comput. Mater., 2019, 5: 87
141 Olivecrona M, Blaschke T, Engkvist O, et al. Molecular de-novo design through deep reinforcement learning [J]. J. Cheminform., 2017, 9: 48
142 Popova M, Isayev O, Tropsha A. Deep reinforcement learning for de novo drug design [J]. Sci. Adv., 2018, 4: eaap7885
143 Al-Assaf Y, Kadi H E. Fatigue life prediction of composite materials using polynomial classifiers and recurrent neural networks [J]. Compos. Struct., 2007, 77: 561
144 Granda J M, Donina L, Dragone V, et al. Controlling an organic synthesis robot with machine learning to search for new reactivity [J]. Nature, 2018, 559: 377
145 King R D, Rowland J, Oliver S G, et al. The automation of science [J]. Science, 2009, 324: 85
146 King R D, Whelan K E, Jones F M, et al. Functional genomic hypothesis generation and experimentation by a robot scientist [J]. Nature, 2004, 427: 247
147 Liu S L, Su Y J, Yin H Q, et al. An infrastructure with user-centered presentation data model for integrated management of materials data and services [J]. npj Comput. Mater, 2021, 7: 88
148 Olivetti E A, Cole J M, Kim E, et al. Data-driven materials research enabled by natural language processing and information extraction [J]. Appl. Phys. Rev., 2020, 7: 041317
[1] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[2] 马宗义, 肖伯律, 张峻凡, 朱士泽, 王东. 航天装备牵引下的铝基复合材料研究进展与展望[J]. 金属学报, 2023, 59(4): 457-466.
[3] 冀秀梅, 侯美伶, 王龙, 刘玠, 高克伟. 基于机器学习的中厚板变形抗力模型建模与应用[J]. 金属学报, 2023, 59(3): 435-446.
[4] 杨累, 赵帆, 姜磊, 谢建新. 机器学习辅助2000 MPa级弹簧钢成分和热处理工艺开发[J]. 金属学报, 2023, 59(11): 1499-1512.
[5] 彭治强, 柳前, 郭东伟, 曾子航, 曹江海, 侯自兵. 基于大数据挖掘的连铸结晶器传热独立变化规律[J]. 金属学报, 2023, 59(10): 1389-1400.
[6] 高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.
[7] 宋波, 张金良, 章媛洁, 胡凯, 方儒轩, 姜鑫, 张莘茹, 吴祖胜, 史玉升. 金属激光增材制造材料设计研究进展[J]. 金属学报, 2023, 59(1): 1-15.
[8] 何兴群, 付华栋, 张洪涛, 方继恒, 谢明, 谢建新. 机器学习辅助高性能银合金电接触材料的快速发现[J]. 金属学报, 2022, 58(6): 816-826.
[9] 王冠杰, 李开旗, 彭力宇, 张壹铭, 周健, 孙志梅. 高通量自动流程集成计算与数据管理智能平台及其在合金设计中的应用[J]. 金属学报, 2022, 58(1): 75-88.
[10] 赵婉辰, 郑晨, 肖斌, 刘行, 刘璐, 余童昕, 刘艳洁, 董自强, 刘轶, 周策, 吴洪盛, 路宝坤. 基于Bayesian采样主动机器学习模型的6061铝合金成分精细优化[J]. 金属学报, 2021, 57(6): 797-810.
[11] 徐伟,黄明浩,王金亮,沈春光,张天宇,王晨充. 综述:钢中亚稳奥氏体组织与疲劳性能关系[J]. 金属学报, 2020, 56(4): 459-475.
[12] 宿彦京, 付华栋, 白洋, 姜雪, 谢建新. 中国材料基因工程研究进展[J]. 金属学报, 2020, 56(10): 1313-1323.
[13] 武高辉, 乔菁, 姜龙涛. Al及其复合材料尺寸稳定性原理与稳定化设计研究进展[J]. 金属学报, 2019, 55(1): 33-44.
[14] 刘仁东 史文 何燕霖 李麟 王福. 含TRIP效应的Fe-18Mn-Si-C热轧TWIP钢的设计与研究[J]. 金属学报, 2012, 48(1): 122-128.
[15] 肖纪美. 抗断裂的材料设计[J]. 金属学报, 1997, 33(2): 113-125.