Please wait a minute...
金属学报  2019, Vol. 55 Issue (1): 33-44    DOI: 10.11900/0412.1961.2018.00482
  本期目录 | 过刊浏览 |
Al及其复合材料尺寸稳定性原理与稳定化设计研究进展
武高辉(), 乔菁, 姜龙涛
哈尔滨工业大学材料科学与工程学院 哈尔滨 150001
Research Progress on Principle of Dimensional Stability and Stabilization Design of Al and Its Composites
Gaohui WU(), Jing QIAO, Longtao JIANG
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
引用本文:

武高辉, 乔菁, 姜龙涛. Al及其复合材料尺寸稳定性原理与稳定化设计研究进展[J]. 金属学报, 2019, 55(1): 33-44.
Gaohui WU, Jing QIAO, Longtao JIANG. Research Progress on Principle of Dimensional Stability and Stabilization Design of Al and Its Composites[J]. Acta Metall Sin, 2019, 55(1): 33-44.

全文: PDF(3835 KB)   HTML
摘要: 

尺寸稳定性是指材料在长期贮存或者服役环境下保持原始尺寸不变的能力。陀螺仪、星敏感器、光学观瞄设备等角度、速度、位置传感器的关键零部件对材料的微变形十分敏感,材料的尺寸不稳定性问题已经成为制约装备精度的“卡脖子”问题。国外自20世纪70年代从金属的热处理、预拉伸变形等组织调控方法入手做了较深入的研究,我国关于材料尺寸稳定性的研究十分薄弱,主要集中于残余应力的影响上,工程效果不明显。本文介绍作者及其团队长期从事材料尺寸稳定性研究的体会与成果,包括长期贮存(无应力)条件下尺寸稳定性的表征新方法,基于该方法发现了铝合金相稳定、组织稳定及其各向异性的基本规律;总结了铝基复合材料尺寸稳定性设计的基本原理和基于增强体弥散度的设计思路;高尺寸稳定性的光学级、仪表级SiC/2024Al复合材料的微观构型特征及其在实际工程中应用的效果。理论和实践表明,仪表精度及其精度稳定性取决于材料的尺寸稳定性,而材料的稳定性首要因素是其内禀变形特性,而残余应力是次要的。本工作也表明,尺寸稳定性原理的应用对于精密轴承一类高精度零件的技术提升也将有启发性。

关键词 尺寸稳定性金属基复合材料评价方法复合材料设计    
Abstract

Dimensional stability refers to the materials' ability to maintain their original size during long-term storage or under service conditions. The key components of the angle, velocity and position sensors, such as the gyroscopes, star sensors and optical observation devices, are extreme sensitive to the micro-deformation of the materials, and the dimensional instability of the present materials has become to be the bottleneck problem that restricts the accuracy of the equipment. Deep research has been carried out abroad from the aspect of the microstructure modification by heat-treatment and pretension deformation treatment of metals since 1970s. However, the domestic research on the dimensional stability is rather weak, which was mainly focused on the effect of the residual stress, and the corresponding engineering application effect is not pronounced. In the present work, the research experience and main results of the authors and coworkers on dimensional stability for decades have been introduced, including novel characterization method of dimensional stability during long-term storage (without stress), and the basic evolution process of the phase-stability, microstructure-stability and the anisotropy behavior of the Al alloys, which was revealed by the novel characterization method. Furthermore, the basic design principles of high dimensional stability and the design ideas based on the dispersivity of reinforcements of the Al matrix composites have been introduced. Moreover, the microstructure characters and the application effect in practical engineering of the high dimensional stability optical-grade and instrument-grade SiC/2024Al composites have been described. Based on the theoretical analysis and the practice effects, it indicates that the accuracy and accuracy stability of the instruments is mainly depended on dimensional stability of the used materials, and the dimensional stability of the materials was mainly affected by its intrinsic deformation characteristics, while the effect of the residual stress was subordinate. The present work also indicates that the application of the dimensional stability principle is also instructive to the technology upgrading of the high precision components, such as precision bearings.

Key wordsdimensional stability    metal matrix composite    characterization method    composite design
收稿日期: 2018-10-24     
ZTFLH:  TB333  
基金资助:国家自然科学基金项目No.U1637201
作者简介:

作者简介 武高辉,男,1955年生,教授,博士

图1  T6态SiC/2024Al复合材料在-20~60 ℃之间循环时的温度-时间曲线和尺寸变化-循环次数曲线
图2  2024Al合金板材不同方向190 ℃时效时尺寸变化曲线[11]
Al alloy or precipitated phase Density
gcm-3
Specific volume cm3g-1
2024Al 2.780 0.360
Al 2.698 0.371
Al2CuMg 3.552 0.282
Al2Cu 4.347 0.230
Mg2Si 1.940 0.515
表1  2024Al合金中常见析出相的比容
图3  退火态SiC/2024Al复合材料在160 ℃保温过程中的尺寸变化[18]
图4  淬火后SiC/2024Al和SiC/1199Al在160℃保温过程中的尺寸变化[18]
图5  SiC/2024Al中的界面应力分布
图6  由3种模型计算得到的SiC/2024Al复合材料的热膨胀系数[28]
Particle size
μm
Dispersion parameter
DF0 DF1 / m DF2 / m2 DF3
10 8.59×1014 5.18×10-7 2.7×105 0.45
0.15 2.55×1020 7.68×10-9 1.8×107 0.45
表2  45%SiC/2024Al复合材料中增强体的弥散度计算举例[15]
图7  不同颗粒尺寸下铝基复合材料基体组织形态[29]
Materal

Density gcm-3
Thermal expansion coefficient
10-6 K-1
Thermal conductivity
Wm-1K-1
Elastic modulus GPa Yield strength MPa Micro yield strength
MPa
Thermal cycle stability
10-5
Instrument level SiC/2024Al 2.90 11~13 130~150 145~150 >420 >220 0.8~1.0
Optical grade SiC/2024Al 2.97 9~11 >130 >160 - 277 0.5~1.0
RJY50 Be 1.85 11.8 >150 309 240 ~100 >7
2024Al 1.85 23 150 71 345 <120 2~6
GCr15 7.81 13.3 36.7 212 1700
  
图8  冷热循环条件下仪表级SiC/2024Al复合材料与传统材料尺寸稳定性对比
图9  ZL107铝合金和SiC/2024Al复合材料台体集总传递函数[31]
图10  仪表级SiC/2024Al复合材料陀螺仪零件
图11  SiC/2024Al复合材料光学相机零件
图12  仪表级SiC/2024Al复合材料空间推进器转向机构零件
[1] Wu G H, Wang X F, Zhang Q. Method for detecting dimensional stability of solid materials [P]. Chin Pat, 03105719.5, 2003(武高辉, 王秀芳, 张强. 一种固体材料尺寸稳定性检测方法 [P]. 中国专利, 03105719.5, 2003)
[2] Хенкин М Л, ЛокшенИ Х. Размернаястабильностьметаллов и сплавов в производстветочногомашиностроения[M]. ЦайЛюян: переводДюШуфан, 1981: 3
[3] Marschall C W, Maringer R E.Dimensional Instability—An Introduction [M]. New York: Pergamon Press, 1977: 63
[4] Wang X Z, Ma L B, Zhong J M.Test method for micro-yield strength of beryllium material[J]. Phys. Chem. Test-Phys., 1998, 34(10): 20(王学泽, 马立斌, 钟景明. 铍材微屈服强度测试方法[J]. 理化检验-物理分册, 1998, 34(10): 20)
[5] Zhang L N, Zhu P, Zhou J Y.Resistance of metals to microstrain and its influential factors[J]. Acta Metall. Sin., 1990, 26: 208(张力宁, 朱平, 周锦银. 金属微应变抗力及其影响因素分析[J]. 金属学报, 1990, 26: 208)
[6] Zhang F, Jin C, Li X C, et al.Microyield behaviours of a 2024 aluminum alloy[J]. Chin. J. Nonferrous Met., 1998, 8(Suppl.1): 136(张帆, 金城, 李小璀等. 2024铝合金微屈服行为[J]. 中国有色金属学报, 1998, 8(增刊1): 136)
[7] Brown N, Lukens K F Jr. Microstrain in polycrystalline metals[J]. Acta Metall., 1961, 9: 106
[8] Carnahan R D, White J E.The microplastic behaviour of polycrystalline nickel[J]. Philos. Mag., 1964, 10: 513
[9] Song Y F, Ding X F, Zhao X J, et al.The effect of stress-aging on dimensional stability behavior of Al-Cu-Mg alloy[J]. J. Alloys Compd., 2017, 718: 298
[10] Song Y F, Ding X F, Xiao L R, et al.Effects of two-stage aging on the dimensional stability of Al-Cu-Mg alloy[J]. J. Alloys Compd., 2017, 701: 508
[11] Xu L M.Research on anisotropy of dimensional stability for 2024 alluminium alloy sheet [D]. Harbin: Harbin Institute of Technology, 2012(徐丽敏. 2024铝合金板材尺寸稳定性各向异性研究 [D]. 哈尔滨: 哈尔滨工业大学, 2012)
[12] Ke H B.Effect of aging precipitation on dimensional stability of 2024Al [D]. Harbin: Harbin Institute of Technology, 2011(柯慧彬. 时效析出对2024Al尺寸稳定性的影响 [D]. 哈尔滨: 哈尔滨工业大学, 2011)
[13] Lee J K, Earmme Y Y, Aaronson H I, et al.Plastic relaxation of the transformation strain energy of a misfitting spherical precipitate: Ideal plastic behavior[J]. Metall. Mater. Trans., 1980, 11A: 1837
[14] Mohn W R, Vukobratovich D.Recent applications of metal matrix composites in precision instruments and optical systems[J]. J. Mater. Eng., 1988, 10: 225
[15] Wang B.Effect of reinforcment dispersivity on PRMMCs's dimensional stability [D]. Harbin: Harbin Institute of Technology, 2012(王博. 增强相弥散度对PRMMCs尺寸稳定性影响的研究 [D]. 哈尔滨: 哈尔滨工业大学, 2012)
[16] Zhang J Y.Study on properties of silicon carbide particle reinforced aluminum composites [D]. Nanjing: Nanjing Aerospace University, 2006(张建云. 碳化硅颗粒增强铝基复合材料的性能研究 [D]. 南京: 南京航空航天大学, 2006)
[17] Zhang F, Jin C, Li X C, et al.Studies on microyield strength of SiCp/LY12 composite materials[J]. Mater. Guide, 1998, 12(2): 53(张帆, 金城, 李小璀等. SiCp/LY12复合材料微屈服强度的研究[J]. 材料导报, 1998, 12(2): 53)
[18] Wang X F.Study on dimensional stability of SiC/2024Al composites [D]. Harbin: Harbin Institute of Technology, 2003(王秀芳. SiC/2024Al复合材料尺寸稳定性研究 [D]. 哈尔滨: 哈尔滨工业大学, 2003)
[19] Chen S, Wang X F, Wu G H.Analysis of dimensional change law of SiCp/2024Al during aging [A]. 2004 China Materials Seminar[C]. Beijing, Chinese Materials Reseach Society, 2004: 418(陈苏, 王秀芳, 武高辉. SiCp/2024Al时效过程中的尺寸变化规律分析 [A]. 2004年中国材料研讨会论文摘要集[C]. 北京: 中国材料研究学会, 2004: 418)
[20] Prangnell P B, Stobbs W M.The effect of SiC particulate reinforcement on the ageing behaviour of aluminium-based matrix alloys [A]. Proceeding of 7th International Conference on Composites Materials [C]. Oxford: Pergamon Press, 1990: 573
[21] Chu H S, Liu K S, Yeh J W.Aging behavior and tensile properties of 6061Al-0.3 μmAl2O3 particle composites produced by reciprocating extrusion[J]. Scr. Mater., 2001, 45: 541
[22] Daoud A, Reif W.Influence of Al2O3 particulate on the aging response of A356 Al-based composites[J]. J. Mater. Process. Tech., 2002, 123: 313
[23] Pai B C, Ramani G, Pillai R M, et al.Role of magnesium in cast aluminium alloy matrix composites[J]. J. Mater. Sci., 1995, 30: 1903
[24] Zhang F, Li X C, Jin C, et al.Microyield behaviours of SiCp/2024A1 composite and 2024A1 alloy[J]. Acta Metall. Sin., 1998, 34: 713(张帆, 李小璀, 金城等. SiCp/2024A1复合材料及2024A1合金的微屈服行为[J]. 金属学报, 1998, 34: 713)
[25] Geiger A L, Jackson M.Low-expansion MMCs boost avionics[J]. Adv. Mater. Proc., 1989, 136: 23
[26] Geng L, Wen B X, Yao Z K.Thermal physical properties of squeeze casting SiCw/Al composites[J]. Acta Mater. Composit. Sin., 1996, 13(3): 48(耿林, 温丙先, 姚忠凯. 压铸SiCw/Al复合材料的热物理性能研究[J]. 复合材料学报, 1996, 13(3): 48)
[27] Lemieux S, Elomari S, Nemes J A, et al.Thermal expansion of isotropic duralcan metal-matrix composites[J]. J. Mater. Sci., 1998, 33: 4381
[28] Zhang Q.Microstructure and properties of high volume fractional aluminum matrix composite [D]. Harbin: Harbin Institute of Technology, 2003(张强. 高体积分数铝基复合材料的微观组织与性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2003)
[29] Wu G H.Introduction to the design of metal matrix composites [M]. Beijing: Science Press, 2016: 108(武高辉. 金属基复合材料设计引论 [M]. 北京: 科学出版社, 2016: 108)
[30] Wu G H, Jiang L T, Chen G Q, et al.Application progress of instrument grade Al matrix composites in inertial instruments[J]. Navigat. Position. Tim., 2014, 1(1): 63(武高辉, 姜龙涛, 陈国钦等. 仪表级复合材料在惯性仪表中的应用进展[J]. 导航定位与授时, 2014, 1(1): 63)
[31] Yang P J, Li L, Lei Z Q, et al.Research on the application of SiC/Al composite material on inertial device[J]. Navigat. Position. Tim., 2016, 3(6): 63(杨鹏军, 李良, 雷志强等. SiC/Al铝基复合材料在惯性器件上的应用研究[J]. 导航定位与授时, 2016, 3(6): 63)
[1] 马国楠, 朱士泽, 王东, 肖伯律, 马宗义. SiC颗粒增强Al-Zn-Mg-Cu复合材料的时效行为和力学性能[J]. 金属学报, 2023, 59(12): 1655-1664.
[2] 范根莲, 郭峙岐, 谭占秋, 李志强. 金属材料的构型化复合与强韧化[J]. 金属学报, 2022, 58(11): 1416-1426.
[3] 朱士泽, 王东, 王全兆, 肖伯律, 马宗义. Cu含量对SiC/Al-Mg-Si-Cu复合材料自然时效负面效应的影响[J]. 金属学报, 2021, 57(7): 928-936.
[4] 刘东雷, 陈情, 王德, 张睿, 王文琴. Ti-6Al-4V表面电子束熔覆(Ti, W)C1-x复合涂层的形成及摩擦性能[J]. 金属学报, 2020, 56(7): 1025-1035.
[5] 马国楠, 王东, 刘振宇, 毕胜, 昝宇宁, 肖伯律, 马宗义. 热压烧结温度对SiC/Al-Zn-Mg-Cu复合材料微观结构与力学性能的影响[J]. 金属学报, 2019, 55(10): 1319-1328.
[6] 张学习, 郑忠, 高莹, 耿林. 金属基复合材料高通量制备及表征技术研究进展[J]. 金属学报, 2019, 55(1): 109-125.
[7] 肖伯律, 黄治冶, 马凯, 张星星, 马宗义. 非连续增强铝基复合材料的热变形行为研究进展[J]. 金属学报, 2019, 55(1): 59-72.
[8] 范同祥, 刘悦, 杨昆明, 宋健, 张荻. 碳/金属复合材料界面结构优化及界面作用机制的研究进展[J]. 金属学报, 2019, 55(1): 16-32.
[9] 王艳秋,吴昆,王福会. 第二相对镁基材料微弧氧化过程的影响机制*[J]. 金属学报, 2016, 52(6): 689-697.
[10] 范林,刘智勇,杜翠薇,李晓刚. X80管线钢高pH应力腐蚀开裂机制与电位的关系[J]. 金属学报, 2013, 49(6): 689-698.
[11] 许世娇 肖伯律 刘振宇 王文广 马宗义. 高能球磨法制备的碳纳米管增强铝基复合材料的微观组织和力学性能[J]. 金属学报, 2012, 48(7): 882-888.
[12] 宋美慧 宋坚 陈国钦 王宁 武高辉 . 2D Cf/Mg-2.0Re-0.2Zr复合材料的尺寸稳定性[J]. 金属学报, 2009, 45(1): 119-123.
[13] 顾冬冬; 沈以赴 . 添加La2O3对激光烧结(WC-Co)p/Cu金属基复合材料组织和成形性能的影响[J]. 金属学报, 2007, 43(9): 968-976 .
[14] 郭素娟; 康国政 . SiCp/6061Al合金复合材料循环变形行为的有限元模拟[J]. 金属学报, 2006, 42(10): 1051-1055 .
[15] 李斌; 许庆彦; 李旭东; 柳百成 . 用颗粒推移模型模拟Al-Si/SiCp复合材料微观组织[J]. 金属学报, 2005, 41(12): 1303-1308 .