Please wait a minute...
金属学报  2020, Vol. 56 Issue (4): 487-493    DOI: 10.11900/0412.1961.2020.00016
  综述 本期目录 | 过刊浏览 |
基于中子衍射和同步辐射X射线衍射的TWIP钢位错密度计算方法
李亦庄1,2,黄明欣1,2()
1.香港大学机械工程系 香港 999077
2.香港大学深圳研究院 深圳 518057
A Method to Calculate the Dislocation Density of a TWIP Steel Based on Neutron Diffraction and Synchrotron X-Ray Diffraction
LI Yizhuang1,2,HUANG Mingxin1,2()
1.Department of Mechanical Engineering, The University of Hong Kong, Hong Kong 999077, China
2.Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen 518057, China
引用本文:

李亦庄,黄明欣. 基于中子衍射和同步辐射X射线衍射的TWIP钢位错密度计算方法[J]. 金属学报, 2020, 56(4): 487-493.
Yizhuang LI, Mingxin HUANG. A Method to Calculate the Dislocation Density of a TWIP Steel Based on Neutron Diffraction and Synchrotron X-Ray Diffraction[J]. Acta Metall Sin, 2020, 56(4): 487-493.

全文: PDF(2167 KB)   HTML
摘要: 

本文详细梳理并介绍了被广泛应用于高强钢及其它结构金属材料位错密度计算的修正Williamson-Hall法,并结合中子衍射和同步辐射X射线衍射实验结果,以一种孪生诱发塑性(TWIP)钢为例,计算其在变形后的位错密度演化。本文详细介绍如何正确使用该方法以及如何避免常见的一些错误,并介绍其背后的原理及假设。

关键词 修正Williamson-Hall法位错密度TWIP钢中子衍射同步辐射X射线衍射    
Abstract

The modified Williamson-Hall method, which has been widely used to calculate dislocation densities of high-strength steels and other structural alloys, is re-examined in this work, and is further applied to calculate the dislocation density of a deformed twinning-induced plasticity (TWIP) steel by using its neutron diffraction patterns and synchrotron X-ray diffraction patterns. This paper aims not only to promote the proper use of the method but also to shed light on its underlying pre-requisites and assumptions, and is thus expected to help avoid any errors during its usage.

Key wordsmodified Williamson-Hall method    dislocation density    TWIP steel    neutron diffraction    synchrotron X-ray diffraction
收稿日期: 2020-01-13     
ZTFLH:  TG115,TG142  
基金资助:国家重点研发计划项目(2019YFA0209900);国家自然科学基金项目(U1764252);香港研究资助局项目(17255016);香港研究资助局项目(17210418);香港研究资助局项目(R7066-18)
作者简介: 李亦庄,男,1992年生,博士
图1  孪晶诱发塑性(TWIP)钢变形前后的同步辐射XRD衍射信号(蓝色)与中子衍射信号(红色)
图2  未变形TWIP钢与标准样的衍射峰半高宽(ΔK)随峰位(K)的变化关系
图3  中子衍射与同步辐射XRD所测的变形TWIP钢ΔK (矫正后)随K的变化关系
图4  基于中子衍射与同步辐射XRD实验结果的修正Williamson-Hall法绘图
[1] Ungár T. Microstructural parameters from X-ray diffraction peak broadening [J]. Scr. Mater., 2004, 51: 777
[2] Serquis A, Zhu Y T, Peterson E J, et al. Effect of lattice strain and defects on the superconductivity of MgB2 [J]. Appl. Phys. Lett., 2001, 79: 4399
[3] Budrovic Z, Van Swygenhoven H, Derlet P M, et al. Plastic deformation with reversible peak broadening in nanocrystalline nickel [J]. Science, 2004, 304: 273
[4] Wang Y M, Sansoz F, LaGrange T, et al. Defective twin boundaries in nanotwinned metals [J]. Nat. Mater., 2013, 12: 697
[5] Berry J, Provatas N, Rottler J, et al. Defect stability in phase-field crystal models: Stacking faults and partial dislocations [J]. Phys. Rev., 2012, 86B: 224112
[6] Williamson G K, Hall W H. X-ray line broadening from filed aluminium and wolfram [J]. Acta Metall., 1953, 1: 22
[7] Brandstetter S, Derlet P M, Van Petegem S, et al. Williamson-Hall anisotropy in nanocrystalline metals: X-ray diffraction experiments and atomistic simulations [J]. Acta Mater., 2008, 56: 165
[8] Bakshi S D, Sinha D, Chowdhury S G. Anisotropic broadening of XRD peaks of α′-Fe: Williamson-Hall and Warren-Averbach analysis using full width at half maximum (FWHM) and integral breadth (IB) [J]. Mater. Charact., 2018, 142: 144
[9] Ungár T. Dislocation densities, arrangements and character from X-ray diffraction experiments [J]. Mater. Sci. Eng., 2001, A309-310: 14
[10] He B B, Hu B, Yen H W, et al. High dislocation density-induced large ductility in deformed and partitioned steels [J]. Science, 2017, 357: 1029
[11] Zhou P, Liang Z Y, Liu R D, et al. Evolution of dislocations and twins in a strong and ductile nanotwinned steel [J]. Acta Mater., 2016, 111: 96
[12] Liang Z Y, Li Y Z, Huang M X. The respective hardening contributions of dislocations and twins to the flow stress of a twinning-induced plasticity steel [J]. Scr. Mater., 2016, 112: 28
[13] Gutierrez-Urrutia I, Del Valle J, Zaefferer S, et al. Study of internal stresses in a TWIP steel analyzing transient and permanent softening during reverse shear tests [J]. J. Mater. Sci., 2010, 45: 6604
[14] Ungár T, Borbély A. The effect of dislocation contrast on X-ray line broadening: A new approach to line profile analysis [J]. Appl. Phys. Lett., 1996, 69: 3173
[15] Révész A, Ungár T, Borbély A, et al. Dislocations and grain size in ball-milled iron powder [J]. Nanostruct. Mater., 1996, 7: 779
[16] Gubicza J, Ribárik G, Goren-Muginstein G, et al. The density and the character of dislocations in cubic and hexagonal polycrystals determined by X-ray diffraction [J]. Mater. Sci. Eng., 2001, A309-310: 60
[17] Woo W, Balogh L, Ungár T, et al. Grain structure and dislocation density measurements in a friction-stir welded aluminum alloy using X-ray peak profile analysis [J]. Mater. Sci. Eng., 2008, A498: 308
[18] Holzwarth U, Gibson N. The Scherrer equation versus the 'Debye-Scherrer equation' [J]. Nat. Nanotechnol., 2011, 6: 534
[19] Stokes A R, Wilson A J C. The diffraction of X rays by distorted crystal aggregates-I [J]. Proceed. Phys. Soc., 1944, 56: 174
[20] Akama D, Tsuchiyama T, Takaki S. Change in dislocation characteristics with cold working in ultralow-carbon martensitic steel [J]. ISIJ Int., 2016, 56: 1675
[21] Venkateswarlu K, Bose A C, Rameshbabu N. X-ray peak broadening studies of nanocrystalline hydroxyapatite by Williamson-Hall analysis [J]. Physica, 2010, 405B: 4256
[22] Zak A K, Majid W H A, Abrishami M E, et al. X-ray analysis of ZnO nanoparticles by Williamson-Hall and size-strain plot methods [J]. Solid State Sci., 2011, 13: 251
[23] Prabhu Y T, Rao K V, Kumar V S S, et al. X-ray analysis by Williamson-Hall and size-strain plot methods of ZnO nanoparticles with fuel variation [J]. World J. Nano Sci. Eng., 2014, 4: 21
[24] Williamson G K, Smallman R E. III. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum [J]. Philos. Mag., 1956, 1A: 34
[25] Ungár T, Ott S, Sanders P G, et al. Dislocations, grain size and planar faults in nanostructured copper determined by high resolution X-ray diffraction and a new procedure of peak profile analysis [J]. Acta Mater., 1998, 46: 3693
[26] Ungár T, Dragomir I, áRévész, et al. The contrast factors of dislocations in cubic crystals: The dislocation model of strain anisotropy in practice [J]. J. Appl. Cryst., 1999, 32: 992
[27] Ungár T, Groma I, Wilkens M. Asymmetric X-ray line broadening of plastically deformed crystals. II. Evaluation procedure and application to [001]-Cu crystals [J]. J. Appl. Cryst., 1989, 22: 26
[28] Bouaziz O, Allain S, Scott C. Effect of grain and twin boundaries on the hardening mechanisms of twinning-induced plasticity steels [J]. Scr. Mater., 2008, 58: 484
[1] 李时磊, 李阳, 王友康, 王胜杰, 何伦华, 孙光爱, 肖体乔, 王沿东. 基于中子与同步辐射技术的工程材料/部件多尺度残余应力评价[J]. 金属学报, 2023, 59(8): 1001-1014.
[2] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[3] 高钰璧, 丁雨田, 李海峰, 董洪标, 张瑞尧, 李军, 罗全顺. 变形速率对GH3625合金弹-塑性变形行为的影响[J]. 金属学报, 2022, 58(5): 695-708.
[4] 彭俊, 金鑫焱, 钟勇, 王利. 基板表层组织对Fe-16Mn-0.7C-1.5Al TWIP钢可镀性的影响[J]. 金属学报, 2022, 58(12): 1600-1610.
[5] 胡晨, 潘帅, 黄明欣. 高强高韧异质结构温轧TWIP[J]. 金属学报, 2022, 58(11): 1519-1526.
[6] 石增敏, 梁静宇, 李箭, 王毛球, 方子帆. 板条马氏体拉伸塑性行为的原位分析[J]. 金属学报, 2021, 57(5): 595-604.
[7] 李根, 兰鹏, 张家泉. 基于Ce变质处理的TWIP钢凝固组织细化[J]. 金属学报, 2020, 56(5): 704-714.
[8] 李金许,王伟,周耀,刘神光,付豪,王正,阚博. 汽车用先进高强钢的氢脆研究进展[J]. 金属学报, 2020, 56(4): 444-458.
[9] 毕中南,秦海龙,董志国,王相平,王鸣,刘永泉,杜金辉,张继. 高温合金盘锻件制备过程残余应力的演化规律及机制[J]. 金属学报, 2019, 55(9): 1160-1174.
[10] 秦海龙,张瑞尧,毕中南,杜洪标,张金辉. GH4169合金圆盘时效过程残余应力的演化规律研究[J]. 金属学报, 2019, 55(8): 997-1007.
[11] 董福涛,薛飞,田亚强,陈连生,杜林秀,刘相华. 退火温度对TWIP钢组织性能和氢致脆性的影响[J]. 金属学报, 2019, 55(6): 792-800.
[12] 许擎栋, 李克俭, 蔡志鹏, 吴瑶. 脉冲磁场对TC4钛合金微观结构的影响及其机理探究[J]. 金属学报, 2019, 55(4): 489-495.
[13] 高钰璧, 丁雨田, 陈建军, 许佳玉, 马元俊, 张东. 挤压态GH3625合金冷变形过程中的组织和织构演变[J]. 金属学报, 2019, 55(4): 547-554.
[14] 熊健,魏德安,陆宋江,阚前华,康国政,张旭. 位错密度梯度结构Cu单晶微柱压缩的三维离散位错动力学模拟[J]. 金属学报, 2019, 55(11): 1477-1486.
[15] 杨祖坤, 张昌盛, 庞蓓蓓, 洪艳艳, 莫方杰, 刘昭, 孙光爱. 初始微结构对多晶金属Be宏观力学性能的影响[J]. 金属学报, 2018, 54(8): 1150-1156.