|
|
孪生诱发塑性钢拉伸与疲劳性能及变形机制 |
张哲峰( ),邵琛玮,王斌,杨浩坤,董福元,刘睿,张振军,张鹏 |
中国科学院金属研究所 沈阳 110016 |
|
Tensile and Fatigue Properties and Deformation Mechanisms of Twinning-Induced Plasticity Steels |
ZHANG Zhefeng( ),SHAO Chenwei,WANG Bin,YANG Haokun,DONG Fuyuan,LIU Rui,ZHANG Zhenjun,ZHANG Peng |
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
张哲峰,邵琛玮,王斌,杨浩坤,董福元,刘睿,张振军,张鹏. 孪生诱发塑性钢拉伸与疲劳性能及变形机制[J]. 金属学报, 2020, 56(4): 476-486.
Zhefeng ZHANG,
Chenwei SHAO,
Bin WANG,
Haokun YANG,
Fuyuan DONG,
Rui LIU,
Zhenjun ZHANG,
Peng ZHANG.
Tensile and Fatigue Properties and Deformation Mechanisms of Twinning-Induced Plasticity Steels[J]. Acta Metall Sin, 2020, 56(4): 476-486.
[1] | De Cooman B C, Kwon O, Chin K G. State-of-the-knowledge on TWIP steel [J]. Mater. Sci. Technol., 2012, 28: 513 | [2] | Gr?ssel O, Krüger L, Frommeyer G, et al. High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development-properties-application [J]. Int. J. Plast., 2000, 16: 1391 | [3] | Wu S D, An X H, Han W Z, et al. Microstructure evolution and mechanical properties of fcc metallic materials subjected to equal channel angular pressing [J]. Acta Metall. Sin., 2010, 46: 257 | [3] | 吴世丁, 安祥海, 韩卫忠等. 等通道转角挤压过程中fcc金属的微观结构演化与力学性能 [J]. 金属学报, 2010, 46: 257 | [4] | An X H, Wu S D, Wang Z G, et al. Significance of stacking fault energy in bulk nanostructured materials: Insights from Cu and its binary alloys as model systems [J]. Prog. Mater. Sci., 2019, 101: 1 | [5] | Liu R, Zhang Z J, Zhang P, et al. Extremely low-cycle fatigue behaviors of Cu and Cu-Al alloys: Damage mechanisms and life prediction [J]. Acta Mater., 2015, 83: 341 | [6] | Zhang Z F, Liu R, Zhang Z J, et al. Exploration on the unified model for fatigue properties prediction of metallic materials [J]. Acta Metall. Sin., 2018, 54: 1693 | [6] | 张哲峰, 刘 睿, 张振军等. 金属材料疲劳性能预测统一模型探索 [J]. 金属学报, 2018, 54: 1693 | [7] | Shao C W, Zhang P, Liu R, et al. Low-cycle and extremely-low-cycle fatigue behaviors of high-Mn austenitic TRIP/TWIP alloys: Property evaluation, damage mechanisms and life prediction [J]. Acta Mater., 2016, 103: 781 | [8] | Shao C W, Zhang P, Liu R, et al. A remarkable improvement of low-cycle fatigue resistance of high-Mn austenitic TWIP alloys with similar tensile properties: Importance of slip mode [J]. Acta Mater., 2016, 118: 196 | [9] | Yang H K, Zhang Z J, Tian Y Z, et al. Negative to positive transition of strain rate sensitivity in Fe-22Mn-0.6C-x(Al) twinning-induced plasticity steels [J]. Mater. Sci. Eng., 2017, A690: 146 | [10] | Lee S M, Park I J, Jung J G, et al. The effect of Si on hydrogen embrittlement of Fe-18Mn-0.6C-xSi twinning-induced plasticity steels [J]. Acta Mater., 2016, 103: 264 | [11] | Bouaziz O, Allain S, Scott C P, et al. High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships [J]. Curr. Opin. Solid State Mater. Sci., 2011, 15: 141 | [12] | Chen L, Kim H S, Kim S K, et al. Localized deformation due to Portevin-Le Chatelier effect in 18Mn-0.6C TWIP austenitic steel [J]. ISIJ Int., 2007, 47: 1804 | [13] | Yang H K, Zhang Z J, Zhang Z F. Comparison of work hardening and deformation twinning evolution in Fe-22Mn-0.6C-(1.5Al) twinning-induced plasticity steels [J]. Scr. Mater., 2013, 68: 992 | [14] | Dong F Y. Investigations on strength-ductility optimization, fracture and damage behaviors of high strength austenitic steels [D]. Beijing: University of Chinese Academy of Sciences, 2015 | [14] | 董福元. 奥氏体高强钢的强韧化与损伤断裂行为研究 [D]. 北京: 中国科学院大学, 2015 | [15] | An X H, Wu S D, Zhang Z F, et al. Enhanced strength-ductility synergy in nanostructured Cu and Cu-Al alloys processed by high-pressure torsion and subsequent annealing [J]. Scr. Mater., 2012, 66: 227 | [16] | Shao C W, Zhang P, Zhu Y K, et al. Simultaneous improvement of strength and plasticity: Additional work-hardening from gradient microstructure [J]. Acta Mater., 2018, 145: 413 | [17] | Wei Y J, Li Y Q, Zhu L C, et al. Evading the strength-ductility trade-off dilemma in steel through gradient hierarchical nanotwins [J]. Nat. Commun., 2014, 5: 3580 | [18] | Frommeyer G, Brüx U, Neumann P. Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes [J]. ISIJ Int., 2003, 43: 438 | [19] | Yang H K, Zhang Z J, Dong F Y, et al. Strain rate effects on tensile deformation behaviors for Fe-22Mn-0.6C-(1.5Al) twinning-induced plasticity steel [J]. Mater. Sci. Eng., 2014, A607: 551 | [20] | Qian L H, Guo P C, Meng J Y, et al. Unusual grain-size and strain-rate effects on the serrated flow in FeMnC twin-induced plasticity steels [J]. J. Mater. Sci., 2013, 48: 1669 | [21] | Yang H K, Tian Y Z, Zhang Z J, et al. Different strain rate sensitivities between Fe-22Mn-0.6C and Fe-30Mn-3Si-3Al twinning-induced plasticity steels [J]. Mater. Sci. Eng., 2016, A655: 251 | [22] | Yang H K, Doquet V, Zhang Z F. Micro-scale measurements of plastic strain field, and local contributions of slip and twinning in TWIP steels during in situ tensile tests [J]. Mater. Sci. Eng., 2016, A672: 7 | [23] | Shao C W, Zhang P, Zhang Z J, et al. Butterfly effect in low-cycle fatigue: Importance of microscopic damage mechanism [J]. Scr. Mater., 2017, 140: 76 | [24] | Shao C W, Zhang P, Zhang Z J, et al. Forecasting low-cycle fatigue performance of twinning-induced plasticity steels: Difficulty and attempt [J]. Metall. Mater. Trans., 2017, 48A: 5833 | [25] | Niendorf T, Lotze C, Canadinc D, et al. The role of monotonic pre-deformation on the fatigue performance of a high-manganese austenitic TWIP steel [J]. Mater. Sci. Eng., 2009, A499: 518 | [26] | Wang B, Zhang P, Duan Q Q, et al. High-cycle fatigue properties and damage mechanisms of pre-strained Fe-30Mn-0.9C twinning-induced plasticity steel [J]. Mater. Sci. Eng., 2017, A679: 258 | [27] | Cornette D, Cugy P, Hildenbrand A, et al. Ultra high strength FeMn TWIP steels for automotive safety parts [J]. Rev. Met. Paris, 2005, 102: 905 | [28] | Hamada A S, Karjalainen L P, Puustinen J. Fatigue behavior of high-Mn TWIP steels [J]. Mater. Sci. Eng., 2009, A517: 68 | [29] | Wang B, Zhang P, Duan Q Q, et al. Synchronously improved fatigue strength and fatigue crack growth resistance in twinning-induced plasticity steels [J]. Mater. Sci. Eng., 2018, A711: 533 | [30] | Niendorf T, Rubitschek F, Maier H J, et al. Fatigue crack growth-microstructure relationships in a high-manganese austenitic TWIP steel [J]. Mater. Sci. Eng., 2010, A527: 2412 | [31] | Hamada A S, Karjalainen L P. High-cycle fatigue behavior of ultrafine-grained austenitic stainless and TWIP steels [J]. Mater. Sci. Eng., 2010, A527: 5715 | [32] | Shao C W, Wang Q, Zhang P, et al. Improving the high-cycle fatigue properties of twinning-induced plasticity steel by a novel surface treatment process [J]. Mater. Sci. Eng., 2019, A740-741: 28 | [33] | Shao C W, Zhang P, Wang X G, et al. High-cycle fatigue behavior of TWIP steel with graded grains: breaking the rule of mixture [J]. Mater. Res. Lett., 2019, 7: 26 | [34] | Guo P C, Qian L H, Meng J Y, et al. Low-cycle fatigue behavior of a high manganese austenitic twin-induced plasticity steel [J]. Mater. Sci. Eng., 2013, A584: 133 | [35] | Ma P H, Qian L H, Meng J Y, et al. Fatigue crack growth behavior of a coarse- and a fine-grained high manganese austenitic twin-induced plasticity steel [J]. Mater. Sci. Eng., 2014, A605: 160 | [36] | Ma P H, Qian L H, Meng J Y, et al. Influence of Al on the fatigue crack growth behavior of Fe-22Mn-(3Al)-0.6C TWIP steels [J]. Mater. Sci. Eng., 2015, A645: 136 | [37] | Shao C W, Zhang P, Zhu Y K, et al. Simultaneous improvement of strength and plasticity: Additional work-hardening from gradient microstructure [J]. Acta Mater., 2018, 145: 413 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|