Please wait a minute...
金属学报  2020, Vol. 56 Issue (11): 1521-1529    DOI: 10.11900/0412.1961.2020.00087
  本期目录 | 过刊浏览 |
Ti-B-N纳米复合涂层的设计、制备及性能
刘艳梅1, 王铁钢1(), 郭玉垚1, 柯培玲2, 蒙德强1, 张纪福1
1 天津职业技术师范大学天津市高速切削与精密加工重点实验室 天津 300222
2 中国科学院宁波材料技术与工程研究所中国科学院海洋新材料与应用技术重点实验室 宁波 315201
Design, Preparation and Properties of Ti-B-N Nanocomposite Coatings
LIU Yanmei1, WANG Tiegang1(), GUO Yuyao1, KE Peiling2, MENG Deqiang1, ZHANG Jifu1
1 Tianjin Key Laboratory of High Speed Cutting and Precision Manufacturing, Tianjin University of Technology and Education, Tianjin 300222, China
2 Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
引用本文:

刘艳梅, 王铁钢, 郭玉垚, 柯培玲, 蒙德强, 张纪福. Ti-B-N纳米复合涂层的设计、制备及性能[J]. 金属学报, 2020, 56(11): 1521-1529.
Yanmei LIU, Tiegang WANG, Yuyao GUO, Peiling KE, Deqiang MENG, Jifu ZHANG. Design, Preparation and Properties of Ti-B-N Nanocomposite Coatings[J]. Acta Metall Sin, 2020, 56(11): 1521-1529.

全文: PDF(3054 KB)   HTML
摘要: 

利用脉冲直流磁控溅射技术研制Ti-B-N涂层,通过降低反应气体N2流量,减少涂层中a-BN (a代表非晶)软质相的含量,增大TiB2靶溅射功率,提高硬质相TiB2的含量,形成nc-(Ti2N, TiB2)/a-BN (nc代表纳米晶)纳米复合结构,实现涂层增韧和强化。系统研究了TiB2靶溅射功率对Ti-B-N涂层成分、微观结构和性能的影响,利用EDS、HRTEM、SEM、XRD、纳米压痕仪和划痕测试仪对涂层进行表征和测试,利用球-盘式摩擦磨损试验机测试涂层摩擦学性能。结果表明,随着TiB2靶溅射功率增加,Ti-B-N涂层结构逐渐由nc-Ti2N/a-BN演变成hcp-TiB2/a-BN;Ti-B-N涂层的纳米硬度也逐渐增加,当TiB2靶溅射功率为2.4 kW时,涂层硬度最高,约为33.8 GPa;此时Ti-B-N涂层的摩擦系数和磨损率也最低,分别为0.55和2.1×10-4 μm3/(N·μm),涂层耐磨性能最佳。

关键词 涂层强化磁控溅射Ti-B-N涂层靶材溅射功率纳米硬度    
Abstract

TiB2 coating comprises a large number of ionic and covalent bonds, conferring it with excellent properties such as high melting point, high hardness, and good oxidation and corrosion resistances. However, its application to cutting tool surfaces is limited due to high brittleness. When doped with N atoms, TiB2 coating forms a nanocomposite structure with improved toughness. However, the hardness of the resulting coating is significantly impaired by the abundant amorphous BN (a-BN) phase. The addition of metal ions and reactive N2 increases the proportion of hard nitrides and improves the coating hardness. However, the addition of N2 increases the amount of soft a-BN phase, which largely negates the strengthening effect. To further improve the mechanical properties of Ti-B-N coating, a series of Ti-B-N coatings were prepared by pulsed direct current magnetron sputtering in this work. The content of soft-phase a-BN in the coating was reduced by decreasing the flow of reactive gas N2. Meanwhile, the amount of hard TiB2 phase was increased by increasing the sputtering power of the TiB2 target. Consequently, a noncrystalline (nc)-(Ti2N, TiB2)/a-BN nanocomposite coating with significantly improved toughness and strength was formed. The influence of TiB2 target sputtering power on the composition, microstructure, and mechanical and tribological properties of the Ti-B-N coatings were systematically investigated by EDS, TEM, SEM, XRD, and nano-indentation, scratch, and ball-on-disk tribological testings. As the sputtering power of the TiB2 target increased, the microstructure of Ti-B-N coatings gradually evolved from nc-Ti2N/a-BN to hexagonal-close-packed TiB2/a-BN, and the nanohardness also increased gradually. The particle size on the coating surface was significantly increased, and all Ti-B-N coatings were uniform and compact without pinholes and other defects. The coating with highest hardness of about 33.8 GPa was achieved under a sputtering power of 2.4 kW at the TiB2 target. This coating also exhibited the lowest friction coefficient (0.55), lowest wear rate (2.1×10-4 μm3/(N·μm)), and best wear resistance.

Key wordscoating strengthening    magnetron sputtering    Ti-B-N coating    target sputtering power    nano hardness
收稿日期: 2020-03-19     
ZTFLH:  TG174.4  
基金资助:国家自然科学基金项目(51301181);国家自然科学基金项目(51875555);天津市科技重大专项项目(18ZXJMTG00050);天津市自然科学基金项目(19JCYBJC17100)
作者简介: 刘艳梅,女,1976年生,硕士
ParameterValueUnit
Base pressure3.0×10-3Pa
Working pressure0.6Pa
Pulsed DC sputtering power (TiB2 target)0.8, 1.2, 1.6, 2.0, 2.4kW
Bias voltage-50V
Ar∶N2 flow ratio96∶4
Deposition temperature300
Substrate rotation speed30r·min-1
Distance between target and substrate80mm
Deposition time360min
表1  不同TiB2靶溅射功率制备Ti-B-N涂层的工艺参数
图1  不同TiB2靶溅射功率制备Ti-B-N涂层的化学成分
图2  不同TiB2靶溅射功率制备Ti-B-N涂层的XRD谱
图3  不同TiB2靶溅射功率制备Ti-B-N涂层截面和表面形貌的SEM像
图4  TiB2靶溅射功率为2.4 kW时制备Ti-B-N涂层的HRTEM像和相应的SAED花样
图5  不同TiB2靶溅射功率制备Ti-B-N涂层的沉积速率
图6  不同TiB2靶溅射功率制备Ti-B-N涂层的纳米硬度
图7  不同TiB2靶溅射功率制备的Ti-B-N涂层的临界载荷
图8  不同TiB2靶溅射功率制备的Ti-B-N涂层的平均摩擦系数
图9  不同TiB2靶溅射功率沉积的Ti-B-N涂层磨痕形貌的OM像
图10  不同TiB2靶溅射功率沉积的Ti-B-N涂层的磨损率
[1] Panich N, Sun Y. Effect of substrate rotation on structure, hardness and adhesion of magnetron sputtered TiB2 coating on high speed steel [J]. Thin Solid Films, 2006, 500: 190
[2] Ott R D, Ruby C, Huang F, et al. Nanotribology and surface chemistry of reactively sputtered Ti-B-N hard coatings [J]. Thin Solid Films, 2000, 377-378: 602
[3] Panich N, Sun Y. Mechanical characterization of nanostructured TiB2 coatings using microscratch techniques [J]. Tribol. Int., 2006, 39: 138
[4] Lin Y H, Yao J H, Lei Y P, et al. Microstructure and properties of TiB2-TiB reinforced titanium matrix composite coating by laser cladding [J]. Opt. Lasers Eng., 2016, 86: 216
[5] Berger M, Hogmark S. Evaluation of TiB2 coatings in sliding contact against aluminium [J]. Surf. Coat. Technol., 2002, 149: 14
[6] Sanchez C M T, Plata B R, da Costa M E H M, et al. Titanium diboride thin films produced by dc-magnetron sputtering: Structural and mechanical properties [J]. Surf. Coat. Technol., 2011, 205: 3698
[7] Wang X, Martin P J, Kinder T J. Characteristics of TiB2 films prepared by ion beam sputtering [J]. Surf. Coat. Technol., 1996, 78: 37
[8] Shi J, Kumar A, Zhang L, et al. Effect of Cu addition on properties of Ti-Al-Si-N nanocomposite films deposited by cathodic vacuum arc ion plating [J]. Surf. Coat. Technol., 2012, 206: 2947
[9] Liu Y M, Deng D Y, Lei H, et al. Effect of nitrogen content on microstructures and mechanical properties of WB2(N) films deposited by reactive magnetron sputtering [J]. J. Mater. Sci. Technol., 2015, 31: 1217
[10] Mayrhofer P H, Stoiber M. Thermal stability of superhard Ti-B-N coatings [J]. Surf. Coat. Technol., 2007, 201: 6148
[11] Veprek S, Veprek-Heijman M G J. Limits to the preparation of superhard nanocomposites: Impurities, deposition and annealing temperature [J]. Thin Solid Films, 2012, 522: 274
[12] Neidhardt J, O'Sullivan M, Reiter A E, et al. Structure-property-performance relations of high-rate reactive arc-evaporated Ti-B-N nanocomposite coatings [J]. Surf. Coat. Technol., 2006, 201: 2553
[13] Wang T G, Guo Y Y, Tang K Y, et al. Influence of nitrogen flow on structure and performance of the Zr-B-N films prepared by hybrid magnetron sputtering techniques [J]. Surf. Technol., 2018, 47(11): 210
[13] (王铁钢, 郭玉垚, 唐宽瑜等. N2流量比对复合磁控溅射Zr-B-N薄膜结构和性能的影响 [J]. 表面技术, 2018, 47(11): 210)
[14] Yu L H, Zhao Q, Ma B Y, et al. Effect of B target power on microstructure, mechanical properties and friction properties of ZrBN composite films [J]. Mater. Sci. Eng. Powder Metall., 2013, 18: 748
[14] (喻利花, 赵 强, 马冰洋等. B靶功率对ZrBN复合膜的微结构、力学性能及摩擦性能的影响 [J]. 粉末冶金材料科学与工程, 2013, 18: 748)
[15] Zuo W F, Zhao G B, Cheng X R. Effect of sputtering power on micro structure and structure of TiAlN coating [J]. Tool Eng., 2018, 52(4): 76
[15] (左伟峰, 赵广彬, 程玺儒. 溅射功率对TiAlN涂层组织结构与性能的影响 [J]. 工具技术, 2018, 52(4): 76)
[16] Kang M S, Wang T G, Kim K H, et al. Synthesis and properties of Cr-Al-Si-N films deposited by hybrid coating system with high power impulse magnetron sputtering (HIPIMS) and DC pulse sputtering [J]. Trans. Nonferrous Met. Soc. China, 2012, 22(S3): S729
[17] Wang T G, Liu Y M, Zhang T F, et al. Influence of nitrogen flow ratio on the microstructure, composition, and mechanical properties of DC magnetron sputtered Zr-B-O-N films [J]. J. Mater. Sci. Technol., 2012, 28: 981
[18] Mitterer C, Mayrhofer P H, Beschliesser M, et al. Microstructure and properties of nanocomposite Ti-B-N and Ti-B-C coatings [J]. Surf. Coat. Technol., 1999, 120-121: 405
[19] Pfohl C, Rie K T. Wear-resistant PACVD coatings of the system Ti-B-N [J]. Surf. Coat. Technol., 1999, 116-119: 911
doi: 10.1016/S0257-8972(99)00141-3
[20] Shin J H, Choi K S, Wang T G, et al. Microstructure evolution and mechanical properties of Ti-B-N coatings deposited by plasma-enhanced chemical vapor deposition [J]. Trans. Nonferrous Met. Soc. China, 2012, 22(S3): S722
[21] Li C, Dong L, Yu J G, et al. Influence of sputtering power on structure and mechanical properties of Zr-B-Nb-N nanocomposite films [J]. J. Tianjin Normal Univ. (Nat. Sci. Ed.), 2016, 36(6): 13
[21] (李 春, 董 磊, 余建刚等. 溅射功率Zr-B-Nb-N纳米复合膜结构和机械性能的影响 [J]. 天津师范大学学报(自然科学版), 2016, 36(6): 13)
[22] Kunc F, Musil J, Mayrhofer P H, et al. Low-stress superhard Ti-B films prepared by magnetron sputtering [J]. Surf. Coat. Technol., 2003, 174-175: 744
[23] Lin J L, Moore J J, Mishra B, et al. The structure and mechanical and tribological properties of TiBCN nanocomposite coatings [J]. Acta Mater., 2010, 58: 1554
[24] Samuelsson M, Jensen J, Helmersson U, et al. ZrB2 thin films grown by high power impulse magnetron sputtering from a compound target [J]. Thin Solid Films, 2012, 526: 163
[25] Lu C Y, Diyatmika W, Lou B S, et al. Influences of target poisoning on the mechanical properties of TiCrBN thin films grown by a superimposed high power impulse and medium-frequency magnetron sputtering [J]. Surf. Coat. Technol., 2017, 332: 86
[26] Ding J C, Zhang T F, Yun J M, et al. Effect of Cu addition on the microstructure and properties of TiB2 films deposited by a hybrid system combining high power impulse magnetron sputtering and pulsed dc magnetron sputtering [J]. Surf. Coat. Technol., 2018, 344: 441
[27] Fager H, Greczynski G, Jensen J, et al. Growth and properties of amorphous Ti-B-Si-N thin films deposited by hybrid HIPIMS/DC-magnetron co-sputtering from TiB2 and Si targets [J]. Surf. Coat. Technol., 2014, 259: 442
[28] Depla D, De Gryse R. Target poisoning during reactive magnetron sputtering: Part III: The prediction of the critical reactive gas mole fraction [J]. Surf. Coat. Technol., 2004, 183: 196
[29] Wang T G, Zhao S S, Hua W G, et al. Design of a separation device used in detonation gun spraying system and its effects on the performance of WC-Co coatings [J]. Surf. Coat. Technol., 2009, 203: 1637
doi: 10.1016/j.surfcoat.2008.12.012
[30] Wang Z Y, Xu S, Zhang D, et al. Influence of N2 flow rate on structures and mechanical properties of TiSiN coatings prepared by hipims method [J]. Acta Metall. Sin., 2014, 50: 540
doi: 10.3724/SP.J.1037.2013.00698
[30] (王振玉, 徐 胜, 张 栋等. N2流量对HIPIMS制备TiSiN涂层结构和力学性能的影响 [J]. 金属学报, 2014, 50: 540)
doi: 10.3724/SP.J.1037.2013.00698
[31] Burnett D J, Rickerby D S. The relationship between hardness and scratch adhession [J]. Thin Solid Films, 1987, 154: 403
doi: 10.1016/0040-6090(87)90382-8
[32] Rossi S, Fedrizzi L, Leoni M, et al. (Ti, Cr)N and Ti/TiN PVD coatings on 304 stainless steel substrates: Wear-corrosion behaviour [J]. Thin Solid Films, 1999, 350: 161
doi: 10.1016/S0040-6090(99)00235-7
[33] Panich N, Sun Y. Mechanical properties of TiB2-based nanostructured coatings [J]. Surf. Coat. Technol., 2005, 198: 14
doi: 10.1016/j.surfcoat.2004.10.096
[34] Wang T G, Meng D Q, Li B S, et al. Preparation and tribological properties of Cr-Al-Si-N nanocomposite coatings by three target co-sputtering [J]. Surf. Technol., 2019, 48(9): 78
[34] (王铁钢, 蒙德强, 李柏松等. 三靶共溅射纳米复合Cr-Al-Si-N涂层的制备及摩擦学性能研究 [J]. 表面技术, 2019, 48(9): 78)
[35] Guo Y Y, Wang T G, Li B S, et al. CrAlN coatings prepared by HiPIMS/pulsed-DC co-sputtering [J]. Surf. Technol., 2019, 48(4):137
[35] (郭玉垚, 王铁钢, 李柏松等. 高功率脉冲和脉冲直流磁控共溅射CrAlN薄膜的研究 [J]. 表面技术, 2019, 48(4): 137)
[36] Liu Y M, Han R Q, Liu F, et al. Sputtering gas pressure and target power dependence on the microstructure and properties of DC-magnetron sputtered AlB2-type WB2 films [J]. J. Alloys Compd., 2017, 703: 188
doi: 10.1016/j.jallcom.2017.01.337
[37] Wang T G, Zhao S S, Hua W G, et al. Design of a separation device used in detonation gun spraying system and its effects on the performance of WC-Co coatings [J]. Surf. Coat. Technol., 2009, 203: 1637
doi: 10.1016/j.surfcoat.2008.12.012
[38] Kuo Y C, Wang C J, Lee J W. The microstructure and mechanical properties evaluation of CrTiAlSiN coatings: Effects of silicon content [J]. Thin Solid Films, 2017, 638: 220
[39] Hou X, Wang T G, Liu Y, et al. Deposition technology of TiN coatings prepared by arc ion plating [J]. Equip. Environ. Eng., 2019, 16(5): 72
[39] (侯 翔, 王铁钢, 刘 源等. 电弧离子镀TiN涂层沉积工艺研究 [J]. 装备环境工程, 2019, 16(5): 72)
[40] Zheng Y J, Leng Y X, Xin X, et al. Evaluation of mechanical properties of Ti(Cr)SiC(O)N coated cemented carbide tools [J]. Vacuum, 2013, 90: 50
[41] Wang T G, Dawoon J, Liu Y M, et al. Study on nanocrystalline Cr2O3 films deposited by arc ion plating: II. Mechanical and tribological properties [J]. Surf. Coat. Technol., 2012, 206: 2638
[1] 黄鼎, 乔岩欣, 杨兰兰, 王金龙, 陈明辉, 朱圣龙, 王福会. 基体表面喷丸处理对纳米晶涂层循环氧化行为的影响[J]. 金属学报, 2023, 59(5): 668-678.
[2] 曹庆平, 吕林波, 王晓东, 蒋建中. 物理气相沉积制备金属玻璃薄膜及其力学性能的样品尺寸效应[J]. 金属学报, 2021, 57(4): 473-490.
[3] 李文涛,王振玉,张栋,潘建国,柯培玲,汪爱英. 电弧复合磁控溅射结合热退火制备Ti2AlC涂层[J]. 金属学报, 2019, 55(5): 647-656.
[4] 杨莎莎,杨峰,陈明辉,牛云松,朱圣龙,王福会. N掺杂对磁控溅射Ta涂层微观结构与耐磨损性能的影响[J]. 金属学报, 2019, 55(3): 308-316.
[5] 吴厚朴,田修波,张新宇,巩春志. 双脉冲HiPIMS放电特性及CrN薄膜高速率沉积[J]. 金属学报, 2019, 55(3): 299-307.
[6] 时惠英, 杨超, 蒋百灵, 黄蓓, 王迪. 双脉冲磁控溅射峰值靶电流密度对TiN薄膜结构与力学性能的影响[J]. 金属学报, 2018, 54(6): 927-934.
[7] 隋旭东,李国建,王强,秦学思,周向葵,王凯,左立建. 钛合金切削用Ti1-xAlxN涂层的制备及其切削性能研究*[J]. 金属学报, 2016, 52(6): 741-746.
[8] 楼白杨,王宇星. Mo含量对CrMoAlN薄膜微观结构和摩擦磨损性能的影响*[J]. 金属学报, 2016, 52(6): 727-733.
[9] 吴法宇,李建伟,齐羿,丁梧桐,樊子铭,周艳文. 粉末靶射频磁控溅射非晶Al2O3薄膜的制备与性能研究*[J]. 金属学报, 2016, 52(12): 1595-1600.
[10] 齐东丽, 雷浩, 范迪, 裴志亮, 宫骏, 孙超. Mo含量对CrMoN复合涂层的组织结构和性能的影响[J]. 金属学报, 2015, 51(3): 371-377.
[11] 杨超,蒋百灵,冯林,郝娟. 靶面放电特性对沉积粒子离化率及沉积行为的影响*[J]. 金属学报, 2015, 51(12): 1523-1530.
[12] 崔文芳,曹栋,秦高梧. 磁控溅射沉积Ti/TiN多层膜的组织特征及耐磨损性能*[J]. 金属学报, 2015, 51(12): 1531-1537.
[13] 马玉田,刘俊标,霍荣岭,韩立,牛耕. 基于磁控溅射法显微CT W-Al透射靶材的制备及其性能研究*[J]. 金属学报, 2015, 51(11): 1416-1424.
[14] 马玉田,刘俊标,霍荣岭,韩立,牛耕. 基于磁控溅射法显微CT W-Al透射靶材的制备及其性能研究*[J]. 金属学报, 2015, 51(11): 1416-1424.
[15] 徐洋, 孙明雪, 周砚磊, 刘振宇. (Nb, Ti)C在轧后卷取中的析出及对铁素体相微观力学特征的影响[J]. 金属学报, 2015, 51(1): 31-39.