Please wait a minute...
金属学报  2015, Vol. 51 Issue (12): 1523-1530    DOI: 10.11900/0412.1961.2015.00199
  本期目录 | 过刊浏览 |
靶面放电特性对沉积粒子离化率及沉积行为的影响*
杨超1,蒋百灵1,2(),冯林1,郝娟1
1 西安理工大学材料科学与工程学院, 西安 710048
2 南京工业大学材料科学与工程学院, 南京 211816
EFFECT OF DISCHARGE CHARACTERISTICS OF TARGET ON IONIZATION AND DEPOSITION OF DEPOSITED PARTICLES
Chao YANG1,Bailing JIANG1,2(),Lin FENG1,Juan HAO1
1 School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048
2 School of Materials Science and Engineering, Nanjing Technology University, Nanjing 211816
引用本文:

杨超,蒋百灵,冯林,郝娟. 靶面放电特性对沉积粒子离化率及沉积行为的影响*[J]. 金属学报, 2015, 51(12): 1523-1530.
Chao YANG, Bailing JIANG, Lin FENG, Juan HAO. EFFECT OF DISCHARGE CHARACTERISTICS OF TARGET ON IONIZATION AND DEPOSITION OF DEPOSITED PARTICLES[J]. Acta Metall Sin, 2015, 51(12): 1523-1530.

全文: PDF(1291 KB)   HTML
摘要: 

依据气体放电等离子体物理学知识, 通过增加靶材的电流密度将靶面气体放电引入至辉光与弧光放电之间的辉弧放电过渡区. 借助Ar+轰击靶面的碰撞动能和电子传输所产生的Joule热能, 共同诱发靶面电子与原子克服表面逸出功的自发射. 由此获得高密度、高离化和高能量的沉积粒子. 实验分别在辉光放电区和辉弧过渡区各制备2组纯Ti薄膜. 利用激光共聚焦显微镜(CLSM)对不同靶基距处的薄膜厚度进行测量, 通过XRD, SEM, AFM和TEM对薄膜的微观结构进行观察, 并使用涂层附着力划痕仪对薄膜的膜基结合力进行测试. 实验结果表明: 在辉弧放电过渡区内所沉积的纯Ti薄膜具有纳米尺度的晶粒、致密的组织、均匀的薄膜厚度、较快的沉积速率和优异的膜基结合强度.

关键词 磁控溅射离子镀气体放电伏安特性热发射离化率    
Abstract

Magnetron sputtering ion plating (MAIP) is limited by the low density and low ionization of target atoms, which results in that the films deposited by MAIP have poor compactness, low adhesion and the quick decreasing in thickness along the target-to-substrate distance, so this disadvantages of the film quality and property can not satisfy the harsh need of modern society. Based on the physical gas discharging plasma theory, the gas discharge could be introduced into the glow-arc discharge section between the glow discharge and the arc discharge by increasing the target current density. By means of the collision kinetic energy of Ar+ and the Joule heating effect of electrons, the electrons and atoms could be spontaneously induced to emit by overcoming the surface work function. Thus the deposited particles with a high density, a high energy and a high ionization can be obtained. Two groups of the Ti films were deposited in glow discharge and glow-arc discharge sections respectively. The film thickness at different target-to-substrate distances was measured by the CLSM. The microstructure of films was characterized by XRD, SEM, AFM and TEM. The adhesion between the film and substrate was determined by the microscratch tester. The results showed that the Ti film deposited in the glow-arc section of gas discharge had nanocrystal size, dense structure, uniform thickness, high deposition rate and excellent adhesion.

Key wordsmagnetron sputtering ion plating    volt-ampere characteristic of gas discharge    thermal emission    ionization rate
    
基金资助:*国家自然科学基金资助项目51271144
图1  沉积系统及样品摆放的俯视示意图
Sample No. I / A i / (Acm-2) U / V P / W p / (Wcm-2) f / kHz T / μs G / (Pas-1) Us / V
1 5 0.083 320 1600 26.67 40 24.5 150 -65
2 8 0.133 350 2800 46.67 40 24.5 150 -65
3 13 0.217 350 4550 75.83 40 24.5 150 -65
4 15 0.250 320 4800 80.00 40 24.5 150 -65
表1  纯Ti膜的沉积参数
图2  气体放电伏安特性曲线
图3  试样No.1~No.4在不同靶基距位置处的厚度
图4  试样No.1~No.4的XRD谱
图5  试样No.1~No.4的HRTEM像及SAED谱
图6  试样No.1~No.4的表面与截面SEM像
图7  试样No.1~No.4的临界载荷
图8  试样No.1~No.4的划痕照片
[1] Yao S S,Li G Y,Hu W B. Surface Science and Technology. Beijing: China Machine Press, 2005: 1
[1] (姚寿山,李戈扬,胡文彬. 表面科学与技术. 北京: 机械工业出版社, 2005: 1)
[2] Zhou H J,Huang M Z. Metal Material Strength. Beijing: Science Press, 1989: 11
[2] (周惠久,黄明志. 金属材料强度学. 北京: 科学出版社, 1989: 11)
[3] Zeng X Y,Wu Y P. Surface Engineering. Beijing: China Machine Press, 2001: 1
[3] (曾晓雁,吴懿平. 表面工程学. 北京: 机械工业出版社, 2001: 1)
[4] Weis H, Muggenburg T, Grosse P, Herlitze L, Friedrich I, Wuttig M. Thin Solid Films, 1999; 351: 184
[5] Siemroth P, Schulke T. Surf Coat Technol, 2000; 106: 133
[6] Se J H, Kang T S, Noh D Y. J Appl Phys, 1997; 81: 6716
[7] Lin J L, Wang B, Ou Y X, Sproul W D, Dahan I, Moore J J. Surf Coat Technol, 2013; 216: 251
[8] Konstantinidis S, Ricard A, Ganciu M, Dauchot J P, Ranea C, Hecq M. J Appl Phys, 2004; 95: 2900
[9] Ricard A, Nouvellon C, Konstantinidis S, Dauchot J P, Wautelet M, Hecq M. J Vac Sci Technol, 2002; 20A: 1488
[10] Dai D H,Zhou K S. Modern Material Surface Technology and Science. Beijing: Metallurgical Industry Press, 2004: 474
[10] (戴达煌,周克崧. 现代材料表面技术科学. 北京: 冶金工业出版社, 2004: 474)
[11] Windows B, Savvides N. J Vac Sci Technol, 1986; 4A: 196
[12] Windows B, Savvides N. J Vac Sci Technol, 1986; 4A: 453
[13] Sproul W D, Rudnik P J, Graham M E. Surf Coat Technol, 1990; 43/44: 270
[14] Thomas J L. Eng Fract Mech, 2014; 123: 2
[15] Tian M B. Thin Film Technology and Membrane Materials. Beijing: TsingHua University Press, 2006: 493
[15] (田民波. 薄膜技术与薄膜材料. 北京: 清华大学出版社, 2006: 493)
[16] Cullity B D,Stock S R. Elements of X-Ray Diffraction. 3nd Ed., London: Prentice-Hall Press, 2001: 167
[17] Jenkin R L. Introduction to X-Ray Diffractometry. New York: John Wiley and Sons Press, 1996: 89
[18] Greene J E, Sundgren L, Hulitman L, Petrov I, Derstrom D B. Appl Phys Lett, 1995; 67: 2928
[19] Goldfarb I, Pelleg J, Zevin L. Thin Solid Films, 1991; 200: 117
[20] Zhao J P, Wang X, Chen Z Y, Yang S Q, Shi T S, Liu H. Appl Phys Lett, 1997; 30: 5
[21] McQuillan A D,McQuillan M K,translated by Feng H Y. Titanium. Beijing: Metallurgical Industry Press, 1960: 136
[21] (McQuillan A D,McQuillan M K著,冯胡叶译. 钛. 北京: 冶金工业出版社, 1960: 136)
[22] Song W X. Metallography. Beijing: Metallurgical Industry Press, 1989: 454
[22] (宋维锡. 金属学. 北京: 冶金工业出版社, 1989: 454)
[23] Tang W Z. The Preparation Principle, Technology and Application. 2nd Ed., Beijing: Metallurgical Industry Press, 2003: 184
[23] (唐伟忠. 薄膜材料制备原理、技术与应用. 第二版, 北京: 冶金工业出版社, 2003: 184)
[24] Hein K W, Leyland A, Matthewsa A. Thin Solid Films, 1995; 270: 431
[1] 时惠英 龙艳妮 蒋百灵 陈迪春. 打底层对铝合金表面GLC镀层组织和摩擦学特性的影响[J]. 金属学报, 2012, 48(8): 983-988.