|
|
Fe(Pt, Ru)B非晶带材脱合金制备纳米多孔PtRuFe及其甲醇电催化性能 |
徐秀月, 李艳辉( ), 张伟 |
大连理工大学材料科学与工程学院三束材料改性教育部重点实验室 大连 116024 |
|
Fabrication of Nanoporous PtRuFe by Dealloying Amorphous Fe(Pt, Ru)B Ribbons and Their Methanol Electrocatalytic Properties |
XU Xiuyue, LI Yanhui( ), ZHANG Wei |
Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China |
引用本文:
徐秀月, 李艳辉, 张伟. Fe(Pt, Ru)B非晶带材脱合金制备纳米多孔PtRuFe及其甲醇电催化性能[J]. 金属学报, 2020, 56(10): 1393-1400.
Xiuyue XU,
Yanhui LI,
Wei ZHANG.
Fabrication of Nanoporous PtRuFe by Dealloying Amorphous Fe(Pt, Ru)B Ribbons and Their Methanol Electrocatalytic Properties[J]. Acta Metall Sin, 2020, 56(10): 1393-1400.
[1] |
Scofield M E, Koenigsmann C, Wang L, et al. Tailoring the composition of ultrathin, ternary alloy PtRuFe nanowires for the methanol oxidation reaction and formic acid oxidation reaction [J]. Energy Environ. Sci., 2015, 8: 350
doi: 10.1039/C4EE02162B
|
[2] |
Li M Y, Zheng H J, Han G Y, et al. Facile synthesis of binary PtRu nanoflowers for advanced electrocatalysts toward methanol oxidation [J]. Catal. Commun., 2017, 92: 95
doi: 10.1016/j.catcom.2017.01.014
|
[3] |
Jeon M K, Won J Y, Lee K R, et al. Highly active PtRuFe/C catalyst for methanol electro-oxidation [J]. Electrochem. Commun., 2007, 9: 2163
doi: 10.1016/j.elecom.2007.06.014
|
[4] |
Sahin O, Kivrak H. A comparative study of electrochemical methods on Pt-Ru DMFC anode catalysts: The effect of Ru addition [J]. Int. J. Hydrogen Energy, 2013, 38: 901
doi: 10.1016/j.ijhydene.2012.10.066
|
[5] |
Rodriguez J R, Félix R M, Reynoso E A, et al. Synthesis of Pt and Pt-Fe nanoparticles supported on MWCNTs used as electrocatalysts in the methanol oxidation reaction [J]. J. Energy Chem., 2014, 23: 483
|
[6] |
Deivaraj T C, Chen W X, Lee J Y. Preparation of PtNi nanoparticles for the electrocatalytic oxidation of methanol [J]. J. Mater. Chem., 2003, 13: 2555
doi: 10.1039/b307040a
|
[7] |
Mondal A, De A, Datta J. Selective methodology for developing PtCo NPs and performance screening for energy efficient electro-catalysis in direct ethanol fuel cell [J]. Int. J. Hydrogen Energy, 2019, 44: 10996
doi: 10.1016/j.ijhydene.2019.02.146
|
[8] |
Lu Q Q, Huang J S, Han C, et al. Facile synthesis of composition-tunable PtRh nanosponges for methanol oxidation reaction [J]. Electrochim. Acta, 2018, 266: 305
doi: 10.1016/j.electacta.2018.02.021
|
[9] |
Zheng Y Y, Qiao J H, Hu J G, et al. PtIr alloy nanowire assembly on carbon cloth as advanced anode catalysts for methanol oxidation [J]. Int. J. Hydrogen Energy, 2019, 44: 20336
doi: 10.1016/j.ijhydene.2019.05.218
|
[10] |
Strasser P, Fan Q, Devenney M, et al. High throughput experimental and theoretical predictive screening of materials—A comparative study of search strategies for new fuel cell anode catalysts [J]. J. Phys. Chem., 2003, 107B: 11013
|
[11] |
Zhao Y, Hong B, Fan L Z. Electrodeposition of PtRu/MWCNTs and PtRuNi/MWCNTs and their performance in direct methanol fuel cells [J]. Acta Metall. Sin., 2013, 49: 699
doi: 10.3724/SP.J.1037.2012.00692
|
[11] |
(赵 越, 洪 波, 范楼珍. 电沉积制备PtRu/MWCNTs和PtRuNi/MWCNTs及其在直接甲醇燃料电池中的性能 [J]. 金属学报, 2013, 49: 699)
doi: 10.3724/SP.J.1037.2012.00692
|
[12] |
Lee K R, Jeon M K, Woo S I. Composition optimization of PtRuM/C (M=Fe and Mo) catalysts for methanol electro-oxidation via combinatorial method [J]. Appl. Catal., 2009, 91B: 428
|
[13] |
Yang Y L, Mu Z Y, Fan Z, et al. Nanoporous silver via electrochemical dealloying and its superior detection sensitivity to formaldehyde [J]. Acta Metall. Sin., 2019, 55: 1302
doi: 10.11900/0412.1961.2019.00054
|
[13] |
(杨玉林, 穆张岩, 范 铮等. 电化学脱合金制备纳米多孔Ag及其甲醛检测性能 [J]. 金属学报, 2019, 55: 1302)
doi: 10.11900/0412.1961.2019.00054
|
[14] |
Hyun J I, Kong K H, Kim W C, et al. Formation of nanoporous Cu-Ag by dealloying Mg-Cu-Y-Ag amorphous alloys and its electrocatalyst oxidation property [J]. Intermetallics, 2019, 110: 106488
doi: 10.1016/j.intermet.2019.106488
|
[15] |
Liu L F, Pippel E, Scholz R, et al. Nanoporous Pt-Co alloy nanowires: Fabrication, characterization, and electrocatalytic properties [J]. Nano Lett., 2009, 9: 4352
doi: 10.1021/nl902619q
pmid: 19842671
|
[16] |
Erlebacher J, Aziz M J, Karma A, et al. Evolution of nanoporosity in dealloying [J]. Nature, 2001, 410: 450
doi: 10.1038/35068529
pmid: 11260708
|
[17] |
Erlebacher J. An atomistic description of dealloying: Porosity evolution, the critical potential, and rate-limiting behavior [J]. J. Electrochem. Soc., 2004, 151: C614
|
[18] |
Hodge A M, Hayes J R, Caro J A, et al. Characterization and mechanical behavior of nanoporous gold [J]. Adv. Mater., 2006, 8: 853
doi: 10.1002/(ISSN)1521-4095
|
[19] |
Rizzi P, Scaglione F, Battezzati L. Nanoporous gold by dealloying of an amorphous precursor [J]. J. Alloys Compd., 2014, 586: S117
|
[20] |
Wang S S, Liu L. Fabrication of novel nanoporous copper powder catalyst by dealloying of ZrCuNiAl amorphous powders for the application of wastewater treatments [J]. J. Hazard. Mater., 2017, 340: 445
doi: 10.1016/j.jhazmat.2017.07.022
pmid: 28755552
|
[21] |
Xu H J, Zhang T. Formation of ultrafine spongy nanoporous metals (Ni, Cu, Pd, Ag and Au) by dealloying metallic glasses in acids with capping effect [J]. Corros. Sci., 2019, 153: 1
doi: 10.1016/j.corsci.2019.03.029
|
[22] |
Ou S L, Ma D G, Li Y H, et al. Fabrication and electrocatalytic properties of ferromagnetic nanoporous PtFe by dealloying an amorphous Fe60Pt10B30 alloy [J]. J. Alloys Compd., 2017, 706: 215
doi: 10.1016/j.jallcom.2017.02.203
|
[23] |
Luo X K, Li R, Huang L, et al. Nucleation and growth of nanoporous copper ligaments during electrochemical dealloying of Mg-based metallic glasses [J]. Corros. Sci., 2013, 67: 100
doi: 10.1016/j.corsci.2012.10.010
|
[24] |
Dan Z H, Qin F X, Sugawara Y, et al. Elaboration of nanoporous copper by modifying surface diffusivity by the minor addition of gold [J]. Microporous Mesoporous Mater., 2013, 165: 257
doi: 10.1016/j.micromeso.2012.08.026
|
[25] |
Xu C X, Wang R Y, Chen M W, et al. Dealloying to nanoporous Au/Pt alloys and their structure sensitive electrocatalytic properties [J]. Phys. Chem. Chem. Phys., 2010, 12: 239
doi: 10.1039/b917788d
pmid: 20024465
|
[26] |
Rethinasabapathy M, Kang S M, Haldorai Y, et al. Ternary PtRuFe nanoparticles supported N-doped graphene as an efficient bifunctional catalyst for methanol oxidation and oxygen reduction reactions [J]. Int. J. Hydrogen Energy, 2017, 42: 30738
doi: 10.1016/j.ijhydene.2017.10.121
|
[27] |
Frelink T, Visscher W, van Veen J A R. Particle size effect of carbon-supported platinum catalysts for the electrooxidation of methanol [J]. J. Electroanal. Chem., 1995, 382: 65
doi: 10.1016/0022-0728(94)03648-M
|
[28] |
Gong L Y, Yang Z Y, Li K, et al. Recent development of methanol electrooxidation catalysts for direct methanol fuel cell [J]. J. Energy Chem., 2018, 27: 1618
doi: 10.1016/j.jechem.2018.01.029
|
[29] |
Wang Q M, Chen S G, Li P, et al. Surface Ru enriched structurally ordered intermetallic PtFe@PtRuFe core-shell nanostructure boosts methanol oxidation reaction catalysis [J]. Appl. Catal., 2019, 252B: 120
|
[30] |
Cai Z, Kuang Y, Qi X H, et al. Ultrathin branched PtFe and PtRuFe nanodendrites with enhanced electrocatalytic activity [J]. J. Mater. Chem., 2015, 3A: 1182
|
[31] |
Tian M M, Shi S, Shen Y L, et al. PtRu alloy nanoparticles supported on nanoporous gold as an efficient anode catalyst for direct methanol fuel cell [J]. Electrochim. Acta, 2019, 293: 390
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|