Please wait a minute...
金属学报  2020, Vol. 56 Issue (10): 1393-1400    DOI: 10.11900/0412.1961.2020.00028
  本期目录 | 过刊浏览 |
Fe(Pt, Ru)B非晶带材脱合金制备纳米多孔PtRuFe及其甲醇电催化性能
徐秀月, 李艳辉(), 张伟
大连理工大学材料科学与工程学院三束材料改性教育部重点实验室 大连 116024
Fabrication of Nanoporous PtRuFe by Dealloying Amorphous Fe(Pt, Ru)B Ribbons and Their Methanol Electrocatalytic Properties
XU Xiuyue, LI Yanhui(), ZHANG Wei
Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
引用本文:

徐秀月, 李艳辉, 张伟. Fe(Pt, Ru)B非晶带材脱合金制备纳米多孔PtRuFe及其甲醇电催化性能[J]. 金属学报, 2020, 56(10): 1393-1400.
Xiuyue XU, Yanhui LI, Wei ZHANG. Fabrication of Nanoporous PtRuFe by Dealloying Amorphous Fe(Pt, Ru)B Ribbons and Their Methanol Electrocatalytic Properties[J]. Acta Metall Sin, 2020, 56(10): 1393-1400.

全文: PDF(2707 KB)   HTML
摘要: 

以Fe65Pt10-xRuxB25 (x=0、2、4,原子分数,%)急冷合金带材为前驱体,在0.1 mol/L H2SO4溶液中进行恒电位脱合金化,制备纳米多孔合金,并对合金的相组成和孔结构进行表征,对其甲醇电催化性能进行评价。结果表明,所有急冷合金带材均具有非晶结构,脱合金后可形成由单一fcc结构(Pt, Ru)Fe相组成的纳米多孔合金。当x=0、2时,制备的合金具有均匀双连通纳米多孔结构,平均孔径和韧带尺寸分别为6~7和7~8 nm;x=4时,纳米多孔合金表面有裂纹产生。随x由0增至4,纳米多孔合金在0.5 mol/L H2SO4+1.0 mol/L CH3OH混合溶液中的正扫氧化峰电位依次向负电位方向移动,正扫氧化峰电流密度(jf)先增加后降低,而正扫、反扫氧化峰电流密度的比值(jf/jb)逐渐增加。x=2时,纳米多孔合金的jfjf/jb分别为0.87 mA/cm2和4.6,分别是x=0时纳米多孔合金的1.7和2.7倍,表明其具有比PtFe合金更高的甲醇电催化活性和抗CO中毒能力。PtRuFe三元纳米多孔合金催化性能的改善源于Pt/Ru双功能机制和加入Ru引起的对CO氧化物种吸附能的减弱。此外,纳米多孔PtRuFe合金还具有铁磁性,便于分离和回收。

关键词 PtRuFe合金纳米多孔金属非晶合金脱合金化电催化性能    
Abstract

The growing technological demand for high-efficiency direct methanol fuel cells (DMFCs) drives the exploration of catalysts with improved catalytic performance. Conventional pure Pt with good catalytic activity for methanol oxidation reaction (MOR) have been applied in the DMFCs for several decades, while their CO tolerance still needs to be further enhanced. Formation of nanoporous structure with a high specific surface area is an effective way to increase the catalytic efficiency by providing more active sites. Alloying suitable Fe and Ru into Pt is promising for the improvements of both catalytic activity and anti-CO poisoning. In this work, the nanoporous alloys have been fabricated by dealloying Fe65Pt10-xRuxB25 (x=0, 2, 4, atomic fraction, %) melt-spun alloy ribbons in 0.1 mol/L H2SO4 solution, and the phase structures, morphologies, chemical compositions, and magnetic properties of the melt-spun ribbons and nanoporous alloys were characterized by XRD, TEM, SEM, EDS, XPS and VSM, respectively. The electrocatalytic properties for MOR of the nanoporous alloys were examined by cycle voltammetry in 0.5 mol/L H2SO4+1.0 mol/L CH3OH solution. The results reveal that all melt-spun ribbons are fully amorphous, and nanoporous (Pt, Ru)Fe with a single-fcc phase can be obtained after dealloying. The nanoporous (Pt, Ru)Fe dealloyed from x=0 and 2 precursors possess a similar fine bicontinuous ligament/channel structure with average pore diameter and ligament size of 6~7 and 7~8 nm, respectively. Cracks can be found on the surficial nanoporous architecture for the nanoporous PtRuFe obtained from the x=4 alloy. With enriching of Ru, the oxidation peak potential of the nanoporous alloys exhibits a negative shift, and the ratio (jf/jb) of the peak current density in the forward scan (jf) to that in the backward scan (jb) increases gradually. The jf and jf/jb for the nanoporous PtRuFe dealloyed from the x=2 alloy is 0.87 mA/cm2 and 4.6, which are 1.7 and 2.7 times of those for the nanoporous PtFe, respectively, indicating the superior electrocatalytic activity for MOR and CO tolerance in comparison with the binary PtFe alloy. The improvement in electrocatalytic performance after Ru addition can be attribute to the combination of Pt/Ru bifunctional mechanism and weakened Pt-COads adsorption energy. In addition, the nanoporous PtRuFe alloys also exhibit ferromagnetic characteristic with saturation magnetization values of 0.41~0.42 T, which can be easily separated and recycled in the practical applications. This work paves the way for the development of high-performance MOR electrocatalyst.

Key wordsPtRuFe alloy    nanoporous metal    amorphous alloy    dealloying    electrocatalytic property
收稿日期: 2020-01-17     
ZTFLH:  TG146  
基金资助:国家自然科学基金项目(51771039);国家自然科学基金项目(51171034)
作者简介: 徐秀月,女,1995年生,硕士生
图1  Fe65Pt10-xRuxB25 (x=0~4)急冷合金带材及其脱合金后样品的XRD谱
图2  Fe65Pt10-xRuxB25非晶合金带材脱合金后的表面及横截面形貌的SEM像和EDS
xPhase

d

nm

l

nm

Atomic fraction / %
PtRuFe
0fcc-PtFe7866.02-33.98
2fcc-PtRuFe6752.0213.2334.75
4fcc-PtRuFe3-37.8625.8236.32
表1  Fe65Pt10-xRuxB25 (x=0~4)非晶合金带材脱合金后样品的相组成、平均孔径(d)和韧带尺寸(l)以及Pt、Ru和Fe的相对原子分数
图3  Fe65Pt8Ru2B25急冷合金带材及其脱合金后样品的TEM眀场像和选区电子衍射(SAED)花样
图4  Fe65Pt10-xRuxB25 (x=0~4)非晶合金带材脱合金后的纳米多孔合金在0.5 mol/L H2SO4和0.5 mol/L H2SO4+1.0 mol/L CH3OH混合溶液中的循环伏安曲线,纳米多孔合金的甲醇氧化峰值电流密度(jf)及正、反扫氧化峰电流密度比值(jf /jb)与Ru含量的关系(商用Pt/C数据绘在图中作为对比)
图5  Fe65Pt10-xRuxB25(x=0~4)非晶合金带材脱合金后的纳米多孔合金的XPS谱
图6  Fe65Pt10-xRuxB25 (x=0~4)急冷合金带材及脱合金后样品的磁滞回线
[1] Scofield M E, Koenigsmann C, Wang L, et al. Tailoring the composition of ultrathin, ternary alloy PtRuFe nanowires for the methanol oxidation reaction and formic acid oxidation reaction [J]. Energy Environ. Sci., 2015, 8: 350
doi: 10.1039/C4EE02162B
[2] Li M Y, Zheng H J, Han G Y, et al. Facile synthesis of binary PtRu nanoflowers for advanced electrocatalysts toward methanol oxidation [J]. Catal. Commun., 2017, 92: 95
doi: 10.1016/j.catcom.2017.01.014
[3] Jeon M K, Won J Y, Lee K R, et al. Highly active PtRuFe/C catalyst for methanol electro-oxidation [J]. Electrochem. Commun., 2007, 9: 2163
doi: 10.1016/j.elecom.2007.06.014
[4] Sahin O, Kivrak H. A comparative study of electrochemical methods on Pt-Ru DMFC anode catalysts: The effect of Ru addition [J]. Int. J. Hydrogen Energy, 2013, 38: 901
doi: 10.1016/j.ijhydene.2012.10.066
[5] Rodriguez J R, Félix R M, Reynoso E A, et al. Synthesis of Pt and Pt-Fe nanoparticles supported on MWCNTs used as electrocatalysts in the methanol oxidation reaction [J]. J. Energy Chem., 2014, 23: 483
[6] Deivaraj T C, Chen W X, Lee J Y. Preparation of PtNi nanoparticles for the electrocatalytic oxidation of methanol [J]. J. Mater. Chem., 2003, 13: 2555
doi: 10.1039/b307040a
[7] Mondal A, De A, Datta J. Selective methodology for developing PtCo NPs and performance screening for energy efficient electro-catalysis in direct ethanol fuel cell [J]. Int. J. Hydrogen Energy, 2019, 44: 10996
doi: 10.1016/j.ijhydene.2019.02.146
[8] Lu Q Q, Huang J S, Han C, et al. Facile synthesis of composition-tunable PtRh nanosponges for methanol oxidation reaction [J]. Electrochim. Acta, 2018, 266: 305
doi: 10.1016/j.electacta.2018.02.021
[9] Zheng Y Y, Qiao J H, Hu J G, et al. PtIr alloy nanowire assembly on carbon cloth as advanced anode catalysts for methanol oxidation [J]. Int. J. Hydrogen Energy, 2019, 44: 20336
doi: 10.1016/j.ijhydene.2019.05.218
[10] Strasser P, Fan Q, Devenney M, et al. High throughput experimental and theoretical predictive screening of materials—A comparative study of search strategies for new fuel cell anode catalysts [J]. J. Phys. Chem., 2003, 107B: 11013
[11] Zhao Y, Hong B, Fan L Z. Electrodeposition of PtRu/MWCNTs and PtRuNi/MWCNTs and their performance in direct methanol fuel cells [J]. Acta Metall. Sin., 2013, 49: 699
doi: 10.3724/SP.J.1037.2012.00692
[11] (赵 越, 洪 波, 范楼珍. 电沉积制备PtRu/MWCNTs和PtRuNi/MWCNTs及其在直接甲醇燃料电池中的性能 [J]. 金属学报, 2013, 49: 699)
doi: 10.3724/SP.J.1037.2012.00692
[12] Lee K R, Jeon M K, Woo S I. Composition optimization of PtRuM/C (M=Fe and Mo) catalysts for methanol electro-oxidation via combinatorial method [J]. Appl. Catal., 2009, 91B: 428
[13] Yang Y L, Mu Z Y, Fan Z, et al. Nanoporous silver via electrochemical dealloying and its superior detection sensitivity to formaldehyde [J]. Acta Metall. Sin., 2019, 55: 1302
doi: 10.11900/0412.1961.2019.00054
[13] (杨玉林, 穆张岩, 范 铮等. 电化学脱合金制备纳米多孔Ag及其甲醛检测性能 [J]. 金属学报, 2019, 55: 1302)
doi: 10.11900/0412.1961.2019.00054
[14] Hyun J I, Kong K H, Kim W C, et al. Formation of nanoporous Cu-Ag by dealloying Mg-Cu-Y-Ag amorphous alloys and its electrocatalyst oxidation property [J]. Intermetallics, 2019, 110: 106488
doi: 10.1016/j.intermet.2019.106488
[15] Liu L F, Pippel E, Scholz R, et al. Nanoporous Pt-Co alloy nanowires: Fabrication, characterization, and electrocatalytic properties [J]. Nano Lett., 2009, 9: 4352
doi: 10.1021/nl902619q pmid: 19842671
[16] Erlebacher J, Aziz M J, Karma A, et al. Evolution of nanoporosity in dealloying [J]. Nature, 2001, 410: 450
doi: 10.1038/35068529 pmid: 11260708
[17] Erlebacher J. An atomistic description of dealloying: Porosity evolution, the critical potential, and rate-limiting behavior [J]. J. Electrochem. Soc., 2004, 151: C614
[18] Hodge A M, Hayes J R, Caro J A, et al. Characterization and mechanical behavior of nanoporous gold [J]. Adv. Mater., 2006, 8: 853
doi: 10.1002/(ISSN)1521-4095
[19] Rizzi P, Scaglione F, Battezzati L. Nanoporous gold by dealloying of an amorphous precursor [J]. J. Alloys Compd., 2014, 586: S117
[20] Wang S S, Liu L. Fabrication of novel nanoporous copper powder catalyst by dealloying of ZrCuNiAl amorphous powders for the application of wastewater treatments [J]. J. Hazard. Mater., 2017, 340: 445
doi: 10.1016/j.jhazmat.2017.07.022 pmid: 28755552
[21] Xu H J, Zhang T. Formation of ultrafine spongy nanoporous metals (Ni, Cu, Pd, Ag and Au) by dealloying metallic glasses in acids with capping effect [J]. Corros. Sci., 2019, 153: 1
doi: 10.1016/j.corsci.2019.03.029
[22] Ou S L, Ma D G, Li Y H, et al. Fabrication and electrocatalytic properties of ferromagnetic nanoporous PtFe by dealloying an amorphous Fe60Pt10B30 alloy [J]. J. Alloys Compd., 2017, 706: 215
doi: 10.1016/j.jallcom.2017.02.203
[23] Luo X K, Li R, Huang L, et al. Nucleation and growth of nanoporous copper ligaments during electrochemical dealloying of Mg-based metallic glasses [J]. Corros. Sci., 2013, 67: 100
doi: 10.1016/j.corsci.2012.10.010
[24] Dan Z H, Qin F X, Sugawara Y, et al. Elaboration of nanoporous copper by modifying surface diffusivity by the minor addition of gold [J]. Microporous Mesoporous Mater., 2013, 165: 257
doi: 10.1016/j.micromeso.2012.08.026
[25] Xu C X, Wang R Y, Chen M W, et al. Dealloying to nanoporous Au/Pt alloys and their structure sensitive electrocatalytic properties [J]. Phys. Chem. Chem. Phys., 2010, 12: 239
doi: 10.1039/b917788d pmid: 20024465
[26] Rethinasabapathy M, Kang S M, Haldorai Y, et al. Ternary PtRuFe nanoparticles supported N-doped graphene as an efficient bifunctional catalyst for methanol oxidation and oxygen reduction reactions [J]. Int. J. Hydrogen Energy, 2017, 42: 30738
doi: 10.1016/j.ijhydene.2017.10.121
[27] Frelink T, Visscher W, van Veen J A R. Particle size effect of carbon-supported platinum catalysts for the electrooxidation of methanol [J]. J. Electroanal. Chem., 1995, 382: 65
doi: 10.1016/0022-0728(94)03648-M
[28] Gong L Y, Yang Z Y, Li K, et al. Recent development of methanol electrooxidation catalysts for direct methanol fuel cell [J]. J. Energy Chem., 2018, 27: 1618
doi: 10.1016/j.jechem.2018.01.029
[29] Wang Q M, Chen S G, Li P, et al. Surface Ru enriched structurally ordered intermetallic PtFe@PtRuFe core-shell nanostructure boosts methanol oxidation reaction catalysis [J]. Appl. Catal., 2019, 252B: 120
[30] Cai Z, Kuang Y, Qi X H, et al. Ultrathin branched PtFe and PtRuFe nanodendrites with enhanced electrocatalytic activity [J]. J. Mater. Chem., 2015, 3A: 1182
[31] Tian M M, Shi S, Shen Y L, et al. PtRu alloy nanoparticles supported on nanoporous gold as an efficient anode catalyst for direct methanol fuel cell [J]. Electrochim. Acta, 2019, 293: 390
[1] 段慧超, 王春阳, 叶恒强, 杜奎. 纳米多孔金属表面结构与成分的三维电子层析表征[J]. 金属学报, 2023, 59(10): 1291-1298.
[2] 刘帅帅, 侯超楠, 王恩刚, 贾鹏. Zr61Cu25Al12Ti2Zr52.5Cu17.9Ni14.6Al10Ti5 块体非晶合金过冷液相区的塑性流变行为[J]. 金属学报, 2022, 58(6): 807-815.
[3] 李金富, 李伟. 铝基非晶合金的结构与非晶形成能力[J]. 金属学报, 2022, 58(4): 457-472.
[4] 张金勇, 赵聪聪, 吴宜谨, 陈长玖, 陈正, 沈宝龙. (Fe0.33Co0.33Ni0.33)84 -x Cr8Mn8B x 高熵非晶合金薄带的结构特征及其晶化行为[J]. 金属学报, 2022, 58(2): 215-224.
[5] 韩录会, 柯海波, 张培, 桑革, 黄火根. 非晶态U60Fe27.5Al12.5 合金的晶化动力学行为[J]. 金属学报, 2022, 58(10): 1316-1324.
[6] 毕甲紫, 刘晓斌, 李然, 张涛. 非晶合金粉末作为润滑油添加剂的摩擦学性能[J]. 金属学报, 2021, 57(4): 559-566.
[7] 李宁, 黄信. 块体非晶合金的3D打印成形研究进展[J]. 金属学报, 2021, 57(4): 529-541.
[8] 潘杰, 段峰辉. 非晶合金的回春行为[J]. 金属学报, 2021, 57(4): 439-452.
[9] 胡祥, 葛嘉城, 刘思楠, 伏澍, 吴桢舵, 冯涛, 刘冬, 王循理, 兰司. 具有异常放热现象的Fe-Nb-B-Y非晶合金燃烧机理[J]. 金属学报, 2021, 57(4): 542-552.
[10] 刘日平, 马明臻, 张新宇. 块体非晶合金铸造成形的研究新进展[J]. 金属学报, 2021, 57(4): 515-528.
[11] 朱敏, 欧阳柳章. 镁基储氢合金动力学调控及电化学性能[J]. 金属学报, 2021, 57(11): 1416-1428.
[12] 黄火根, 张鹏国, 张培, 王勤国. U-CoU-Fe基础体系非晶形成能力的比较[J]. 金属学报, 2020, 56(6): 849-854.
[13] 耿遥祥, 王英敏. 铁基非晶合金局域结构与性能关联:基于微合金化机理研究[J]. 金属学报, 2020, 56(11): 1558-1568.
[14] 金辰日, 杨素媛, 邓学元, 王扬卫, 程兴旺. 纳米晶化对锆基非晶合金动态压缩性能的影响[J]. 金属学报, 2019, 55(12): 1561-1568.
[15] 杨高林, 林鑫, 卢献钢. 激光多次熔凝Zr55Cu30Al10Ni5非晶合金的晶化形态与演化机理[J]. 金属学报, 2019, 55(12): 1544-1550.