Please wait a minute...
金属学报  2019, Vol. 55 Issue (9): 1211-1220    DOI: 10.11900/0412.1961.2019.00121
  研究论文 本期目录 | 过刊浏览 |
服役条件下镍基高温合金应力松弛微观机制
江河(),董建新,张麦仓,姚志浩,杨静
北京科技大学材料科学与工程学院 北京 100083
Stress Relaxation Mechanism for Typical Nickel-Based Superalloys Under Service Condition
JIANG He(),DONG Jianxin,ZHANG Maicang,YAO Zhihao,YANG Jing
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

江河,董建新,张麦仓,姚志浩,杨静. 服役条件下镍基高温合金应力松弛微观机制[J]. 金属学报, 2019, 55(9): 1211-1220.
He JIANG, Jianxin DONG, Maicang ZHANG, Zhihao YAO, Jing YANG. Stress Relaxation Mechanism for Typical Nickel-Based Superalloys Under Service Condition[J]. Acta Metall Sin, 2019, 55(9): 1211-1220.

全文: PDF(38878 KB)   HTML
摘要: 

以4种典型镍基高温合金(GH4169、GH4169D、GH4738、GH350)为研究对象,在600~780 ℃和260~510 MPa范围内对其进行应力松弛实验,并利用FESEM和TEM对应力松弛后的样品进行组织观察分析,系统研究了典型镍基高温合金服役条件下应力松弛的微观机制。结果表明,在应力松弛实验过程中应力在开始阶段快速下降后趋于稳定;合金的松弛稳定性随着温度的升高而降低。应力松弛实验中试样的形貌不发生明显改变,而TEM分析表明应力松弛的主要微观机制是位错的运动和析出相对位错运动的阻碍。合金中析出相的种类、尺寸、形态和分布影响了析出相对位错运动阻碍作用的大小,从而决定了合金的应力松弛性能。

关键词 高温合金应力松弛组织演变机制    
Abstract

Since nickel-based superalloys are more and more used as fasteners, it is necessary to investigate the stress relaxation behavior and mechanism of nickel-based superalloy. In present work, the stress relaxation mechanism for four typical nickel-based superalloys (GH4169, GH4169D, GH4738, GH350) for fasteners under service condition was investigated. The stress relaxation tests were carried out according to GB/T 10120-2013 in the temperature range of 600~780 ℃ and initial stress range of 260~510 MPa, and the stress relaxation curves were recorded. The microstructure was studied by FESEM and TEM. The results show that the stress decreases fast in the initial stage of stress relaxation test and then trends to be steady. The stress relaxation stability decreases with increasing temperature. There is no apparent change in the microstructure after stress relaxation test. TEM observation shows that the major mechanism of stress relaxation is the movement of dislocations, and the stress relaxation properties of different alloys depend on the inhibition of dislocation movement. The species, size, shape and distribution of phases determine the ability to hinder dislocation movement and the stress relaxation property of different alloys. GH4169 alloy gets the stress relaxation property mainly by γ' phase, γ'' phase and δ phase hindering the movement of dislocations. In GH4169D alloy, both γ' phase and η phase participate in the stress relaxation process. γ' phase in GH4738 alloy can effectively impede the movement of dislocations and provide good stress relaxation property. The combined effect of γ' phase and η phase guarantees the stress relaxation stability of GH350 alloy.

Key wordssuperalloy    stress relaxation    microstructure evolution    mechanism
收稿日期: 2019-04-18     
ZTFLH:  TG146.1  
基金资助:国家自然科学基金项目(51771016)
作者简介: 江 河,女,1988年生,博士
图1  应力松弛实验样品和典型应力松弛曲线
AlloyCoCrMoTiAlNbTaWCFeNi
GH4169-19.003.001.000.505.30--0.0518.20Bal.
GH4169D8.9819.122.810.751.655.51--0.0399.50Bal.
GH473812.9019.004.422.901.45---0.04-Bal.
GH35024.7716.902.992.201.081.203.951.97<0.02-Bal.
表1  实验用合金化学成分
图2  不同合金的应力松弛曲线
图3  应力松弛实验前后合金的典型显微组织
图4  GH4738合金应力松弛实验后TEM明场像
图5  GH4169合金应力松弛实验后TEM明场像
图6  GH4169D合金在700 ℃、510 MPa应力松弛实验后的TEM明场像
图7  GH350合金应力松弛实验后TEM明场像
图8  GH4169合金在650 ℃不同初应力条件下应力松弛实验后TEM明场像
图9  GH4169合金在650 ℃、1020 MPa条件下未达到稳态的应力松弛曲线及典型显微组织的TEM明场像
[1] PiresF, ClementsR, SantosF, , et al. Evaluation of the performance of Inconel 718 fasteners subjected to cathodic protection systems in offshore and subsea applications [A]. ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering [C]. the Netherlands: ASME, 2011: 165
[2] TechnologiesSPS. Superalloys Developed by SPS Technologies for Aerospace Fasteners [Z]. Jenkintown, PA, USA, 1998: 1
[3] NechacheA, BouzidA H. The effect of cylinder and hub creep on the load relaxation in bolted flanged joints [J]. J. Pressure Vessel Technol., 2008, 130: 031211
[4] GjestlandH, NussbaumG, RegazzoniG, , et al. Stress-relaxation and creep behaviour of some rapidly solidified magnesium alloys [J]. Mater. Sci. Eng., 1991, A134: 1197
[5] ZhouY M, ZhaoZ P, LiH L. The microstructure and stress ralaxation property of 12% Cr steel [J]. Mater. Mech. Eng., 1992, 16(1): 27
[5] 周晔明, 赵中平, 李惠琳. 12% Cr钢的组织与应力松弛性能 [J]. 机械工程材料, 1992, 16(1): 27)
[6] YangX S, WangY J, WangG Y, , et al. Time, stress, and temperature-dependent deformation in nanostructured copper: Stress relaxation tests and simulations [J]. Acta Mater., 2016, 108: 252
[7] LiuW J, JonasJ J. A stress relaxation method for following carbonitride precipitation in austenite at hot working temperatures [J]. Metall. Trans., 1988, 19A: 1403
[8] LiuW J. A review of the stress-relaxation method for following the kinetics of precipitation, recovery and recrystallization [J]. Mater. Sci. Forum, 2012, 706-709: 2758
[9] MonajatiH, ZarandiF, JahaziM, , et al. Strain induced γ' precipitation in nickel base superalloy Udimet 720 using a stress relaxation based technique [J]. Scr. Mater., 2005, 52: 771
[10] RolphJ, EvansA, ParadowskaA, , et al. Stress relaxation through ageing heat treatment—A comparison between in situ and ex situ neutron diffraction techniques [J]. CR Phys., 2012, 13: 307
[11] D'souzaN, KelleherJ, QiuC L, , et al. The role of stress relaxation and creep during high temperature deformation in Ni-base single crystal superalloys—Implications to strain build-up during directional solidification [J]. Acta Mater., 2016, 106: 322
[12] WoodfordD A. Advances in the use of stress relaxation data for design and life assessment in combustion turbines [J]. JSME Int. J., 2002, 45A: 98
[13] CalvoJ, ShuS Y, CabreraJ M. Characterization of precipitation kinetics of Inconel 718 superalloy by the stress relaxation technique [J]. Mater. Sci. Forum, 2012, 706-709: 2393
[14] FossB J, GrayS, HardyM C, , et al. Analysis of shot-peening and residual stress relaxation in the nickel-based superalloy RR1000 [J]. Acta Mater., 2013, 61: 2548
[15] ZhuZ, ZhangL W, SongG Y, , et al. Study on stress relaxation behavior of Hastelloy C-276 alloy [J]. Rare Met. Mater. Eng., 2012, 41: 697
[15] 朱 智, 张立文, 宋冠宇等. Hastelloy C-276合金应力松弛行为的研究 [J]. 稀有金属材料与工程, 2012, 41: 697
[16] CollinsD M, D'SouzaN, PanwisawasC. In-situ neutron diffraction during stress relaxation of a single crystal nickel-base superalloy [J]. Scr. Mater., 2017, 131: 103
[17] NathalM V, BiererJ, EvansL, , et al. Stress relaxation behavior in single crystal superalloys [J]. Mater. Sci. Eng., 2015, A640: 295
[18] NiT W, DongJ X. Creep behaviors and mechanisms of Inconel 718 and Allvac 718 plus [J]. Mater. Sci. Eng., 2017, A700: 406
[19] ChenK, DongJ X, YaoZ H, , et al. Creep performance and damage mechanism for Allvac 718Plus superalloy [J]. Mater. Sci. Eng., 2018, A738: 308
[20] ZhangX M, MaoX P, DengZ Q, , et al. Stress relaxation characteristics in bending of Cu-Be alloys [J]. Chin. J. Nonferrous Met., 2001, 11: 988
[20] 张新明, 毛新平, 邓至谦等. 铍铜带材弯曲应力松弛的力学行为 [J]. 中国有色金属学报, 2001, 11: 988
[21] ChaturvediM C, HanY F. Strengthening mechanisms in Inconel 718 superalloy [J]. Met. Sci., 1983, 17: 145
[22] LinY C, ChenM S, ZhongJ. Prediction of 42CrMo steel flow stress at high temperature and strain rate [J]. Mech. Res. Commun., 2008, 35: 142
[23] LinY C, WenD X, DengJ, , et al. Constitutive models for high-temperature flow behaviors of a Ni-based superalloy [J]. Mater. Des., 2014, 59: 115
[24] WangY, ShaoW Z, ZhenL, , et al. Flow behavior and microstructures of superalloy 718 during high temperature deformation [J]. Mater. Sci. Eng., 2008, A497: 479
[25] LinY C, ChenX M, WenD X, , et al. A physically-based constitutive model for a typical nickel-based superalloy [J]. Comput. Mater. Sci., 2014, 83: 282
[1] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[2] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[3] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[5] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[6] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[7] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[8] 李嘉荣, 董建民, 韩梅, 刘世忠. 吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响[J]. 金属学报, 2023, 59(9): 1201-1208.
[9] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[10] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[11] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[12] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[13] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[14] 冯强, 路松, 李文道, 张晓瑞, 李龙飞, 邹敏, 庄晓黎. γ' 相强化钴基高温合金成分设计与蠕变机理研究进展[J]. 金属学报, 2023, 59(9): 1125-1143.
[15] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.