Please wait a minute...
金属学报  2019, Vol. 55 Issue (7): 919-927    DOI: 10.11900/0412.1961.2018.00524
  本期目录 | 过刊浏览 |
金属轧制复合过程微观变形行为的分子动力学建模及研究
张清东,李硕,张勃洋(),谢璐,李瑞
北京科技大学机械工程学院 北京 100083
Molecular Dynamics Modeling and Studying of Micro-Deformation Behavior in Metal Roll-Bonding Process
Qingdong ZHANG,Shuo LI,Boyang ZHANG(),Lu XIE,Rui LI
School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

张清东,李硕,张勃洋,谢璐,李瑞. 金属轧制复合过程微观变形行为的分子动力学建模及研究[J]. 金属学报, 2019, 55(7): 919-927.
Qingdong ZHANG, Shuo LI, Boyang ZHANG, Lu XIE, Rui LI. Molecular Dynamics Modeling and Studying of Micro-Deformation Behavior in Metal Roll-Bonding Process[J]. Acta Metall Sin, 2019, 55(7): 919-927.

全文: PDF(13275 KB)   HTML
摘要: 

基于分子动力学方法研究金属层合板轧制复合过程界面区材料的微观变形行为,从力学性能和位错运动的角度,对比研究双金属FeCrNi/Fe与单金属的压缩变形,揭示非共格界面对金属微观变形行为的影响。结果表明,双金属模型与2种单金属模型在应力-应变关系和变形行为规律方面都存在明显差异;由于复合界面的存在,变形过程中双金属模型纯Fe基体中的位错在界面附近积累,界面原子的局部剪切作用使FeCrNi基体中的位错形成变得容易,降低了FeCrNi基体的屈服强度;复合界面对于变形过程中位错传播的阻碍作用,使材料抵抗塑性变形的能力得到提高,变形过程中2种金属基体内位错密度的交替变化导致2种金属基体的变形量也对应呈现交替变化的特殊现象。

关键词 分子动力学304不锈钢/Q235碳钢FeCrNi/Fe轧制复合    
Abstract

Stainless steel/carbon steel bimetallic products, which have the characteristic corrosion resistance of stainless steel as well as the characteristics of high strength and low cost of carbon steel, have been widely used in petrochemical, aviation, shipping and other industries. Roll-bonding is an efficient solid-phase joining method for industrial production of bimetallic products. Different from diffusion bonding and friction welding process, the atoms bond and diffuse at interface while the base metal undergoes severe plastic deformation in the process of roll-bonding. In present work, the micro-deformation behavior in the interfacial area of stainless steel/carbon steel during roll-bonding process is studied based on the molecular dynamics method. Firstly, the applicability of the potential function for the bimetallic composite models with different lattice structures was discussed. Then bimetallic model of FeCrNi/Fe and single metal model of FeCrNi, Fe were established. The effect of non-coherent interface on the deformation behavior was revealed by comparing the deformation process of three models. The results show that the mechanical properties and deformation processes of bimetal and single metal are different in the process of deformation bonding. Due to the existence of non-coherent interface, the dislocation in pure Fe matrix is accumulated at the interface during deformation. The local shear effect of interface atoms makes the dislocation formation in FeCrNi matrix easier, thus reducing the yield strength of FeCrNi matrix. The effect of interface on dislocation propagation during alternation makes the dislocation density change alternately in the two matrixes, which improves the ability of material to resist plastic deformation. In addition, the alternately change of the dislocation density within the two matrixes during the deformation process leads to the special phenomenon that the deformation of the two matrixes is alternately changed.

Key wordsmolecular dynamics    304 stainless steel/Q235 carbon steel    FeCrNi/Fe    roll-bonding
收稿日期: 2018-11-20     
ZTFLH:  TG331  
基金资助:国家自然科学基金项目(No.51575040)
作者简介: 张清东,男,1965年生,教授,博士
图1  FeCrNi/Fe在势函数1和势函数2下驰豫过程中的结构含量
图2  势函数1作用下不同晶格常数FeCrNi和Fe的势能变化
图3  FeCrNi/Fe模型、FeCrNi模型和Fe模型的初始构型
图4  双金属FeCrNi/Fe、单金属FeCrNi和Fe沿z方向压缩的应力-应变曲线
图5  600 K下FeCrNi/Fe沿z方向单轴压缩作用下的应力-应变曲线以及材料变形截图
图6  图5中A~B阶段,变形过程中界面处位错向FeCrNi基体发射过程
图7  图5中A~C阶段变形过程中纯Fe基体内部原子重排过程
图8  双金属FeCrNi/Fe和单金属FeCrNi变形过程中的位错演化
图9  双金属FeCrNi/Fe两基体的厚度和总位错线长度随应变的变化
图10  静压实验过程中各基材厚度的变化
[1] Luo Z A, Wang G L, Xie G M, et al. Interfacial microstructure and properties of a vacuum hot roll-bonded titanium-stainless steel clad plate with a niobium interlayer [J]. Acta Metall. Sin. (Eng. Lett.), 2013, 26: 754
[2] Rong J H, Hong X, Xiang G Y, et al. Research on finishing rolling force model for hot rolling wide and heavy stainless steel clad sheets [J]. Appl. Mech. Mater., 2014, 488-489: 213
[3] Zhang Q D, Li S, Liu J Y, et al. Study of a bimetallic interfacial bonding process based on ultrasonic quantitative evaluation [J]. Metals, 2018, 8: 329
[4] Tzou G Y, Tieu A K, Huang M N, et al. Analytical approach to the cold-and-hot bond rolling of sandwich sheet with outer hard and inner soft layers [J]. J. Mater. Process. Technol., 2002, 125-126: 664
[5] Peng Z H, She X F. Effect of thickness ratio on the properties of stainless steel clad aluminum sheet [J]. Acta Metall. Sin., 2000, 36: 1067
[5] (彭志辉, 佘旭凡. 厚度比对不锈钢复合铝板性能的影响 [J]. 金属学报, 2000, 36: 1067)
[6] Zepeda-Ruiz L A, Stukowski A, Oppelstrup T, et al. Probing the limits of metal plasticity with molecular dynamics simulations [J]. Nature, 2017, 550: 492
[7] Song J, Srolovitz D J. Molecular dynamics investigation of patterning via cold welding [J]. J. Mech. Phys. Solids, 2009, 57: 776
[8] Yuan L, Jing P, Liu Y H, et al. Molecular dynamics simulation of polycrystal silver nanowires under tensile deformation [J]. Acta Phys. Sin., 2014, 63: 016201
[8] (袁 林, 敬 鹏, 刘艳华等. 多晶银纳米线拉伸变形的分子动力学模拟研究 [J]. 物理学报, 2014, 63: 016201)
[9] He A M, Shao J L, Wang P, et al. Plastic deformation of single-crystalline copper films with surface orientation [001]: Molecular dynamics simulations [J]. Acta Phys. Sin., 2010, 59: 8836
[9] (何安民, 邵建立, 王 裴等. 单晶Cu(001)薄膜塑性变形的分子动力学模拟 [J]. 物理学报, 2010, 59: 8836)
[10] Zhang H W, Fu Y F, Zheng Y G, et al. Molecular dynamics investigation of plastic deformation mechanism in bulk nanotwinned copper with embedded cracks [J]. Phys. Lett., 2014, 378A: 736
[11] Mendelev M I, Srolovitz D J, Ackland G J, et al. Effect of Fe segregation on the migration of a non-symmetric Σ5 tilt grain boundary in Al [J]. J. Mater. Res., 2005, 20: 208
[12] Bonny G, Pasianot R C, Castin N, et al. Ternary Fe-Cu-Ni many-body potential to model reactor pressure vessel steels: First validation by simulated thermal annealing [J]. Philos. Mag., 2009, 89: 3531
[13] Stukowski A, Sadigh B, Erhart P, et al. Efficient implementation of the concentration-dependent embedded atom method for molecular-dynamics and Monte-Carlo simulations [J]. Modell. Simul. Mater. Sci. Eng., 2009, 17: 075005
[14] Zheng D L, Chen S D, Soh A K, et al. Molecular dynamics simulations of glide dislocations induced by misfit dislocations at the Ni/Al interface [J]. Comput. Mater. Sci., 2010, 48: 551
[15] Hoagland R G, Hirth J P, Misra A. On the role of weak interfaces in blocking slip in nanoscale layered composites [J]. Philos. Mag., 2006, 86: 3537
[16] Wang J, Misra A. An overview of interface-dominated deformation mechanisms in metallic multilayers [J]. Curr. Opin. Solid State Mater. Sci., 2011, 15: 20
[17] Shao S, Medyanik S N. Interaction of dislocations with incoherent interfaces in nanoscale FCC-BCC metallic bi-layers [J]. Modell. Simul. Mater. Sci. Eng., 2010, 18: 055010
[18] Wang J, Hoagland R G, Hirth J P, et al. Atomistic simulations of the shear strength and sliding mechanisms of copper-niobium interfaces [J]. Acta Mater., 2008, 56: 3109
[19] Misra A, Hirth J P, Hoagland R G. Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites [J]. Acta Mater., 2005, 53: 4817
[20] Weng S Y, Ning H M, Hu N, et al. Strengthening effects of twin interface in Cu/Ni multilayer thin films—A molecular dynamics study [J]. Mater. Des., 2016, 111: 1
[21] Luo X, Qian G F, Wang Y M. Computer simulation of metal interfaces [J]. Acta Phys. Sin., 1994, 43: 1957
[21] (罗 旋, 钱革非, 王煜明. Ag/Ni和Cu/Ni界面的分子动力学模拟 [J]. 物理学报, 1994, 43: 1957)
[22] Cheng D, Yan Z J, Yan L. Molecular dynamics simulation of strengthening mechanism of Cu/Ni multilayers [J]. Acta Metall. Sin., 2008, 44: 1461
[22] (程 东, 严志军, 严 立. Cu/Ni多层膜强化机理的分子动力学模拟 [J]. 金属学报, 2008, 44: 1461)
[23] Cheng C, Chen S D, Wu Y Z, et al. Molecular dynamics simulations of deformation behaviors for nanocrystalline Cu/Ni films under different strain rates [J]. J. Mater. Eng., 2015, 43(3): 60
[23] (成 聪, 陈尚达, 吴勇芝, 等. 不同应变率下纳米多晶Cu/Ni薄膜变形行为的分子动力学模拟 [J]. 材料工程, 2015, 43(3): 60)
[24] Bonny G, Castin N, Terentyev D. Interatomic potential for studying ageing under irradiation in stainless steels: The FeNiCr model alloy [J]. Modell. Simul. Mater. Sci. Eng., 2013, 21: 085004
[25] Eich S M, Beinke D, Schmitz G. Embedded-atom potential for an accurate thermodynamic description of the iron-chromium system [J]. Comput. Mater. Sci., 2015, 104: 185
[26] Kelchner C L, Plimpton S J, Hamilton J C. Dislocation nucleation and defect structure during surface indentation [J]. Phys. Rev., 1998, 58B: 11085
[27] Yu J, Xin L, Wang J J, et al. First-principles study of the relaxation and energy of bcc-Fe, fcc-Fe and AISI-304 stainless steel surfaces [J]. Appl. Surf. Sci., 2009, 255: 9032
[28] Stukowski A, Albe K. Extracting dislocations and non-dislocation crystal defects from atomistic simulation data [J]. Modell. Simul. Mater. Sci. Eng., 2010, 18: 085001
[1] 李海勇, 李赛毅. Al <111>对称倾斜晶界迁移行为温度相关性的分子动力学研究[J]. 金属学报, 2022, 58(2): 250-256.
[2] 梁晋洁, 高宁, 李玉红. 体心立方Fe中微裂纹与间隙型位错环相互作用的分子动力学模拟[J]. 金属学报, 2020, 56(9): 1286-1294.
[3] 李美霖, 李赛毅. 金属Mg二阶锥面<c+a>刃位错运动特性的分子动力学模拟[J]. 金属学报, 2020, 56(5): 795-800.
[4] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[5] 李源才, 江五贵, 周宇. 纳米孔洞对单晶/多晶Ni复合体拉伸性能的影响[J]. 金属学报, 2020, 56(5): 776-784.
[6] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
[7] 马小强,杨坤杰,徐喻琼,杜晓超,周建军,肖仁政. 金属Nb级联碰撞的分子动力学模拟[J]. 金属学报, 2020, 56(2): 249-256.
[8] 史俊勤,孙琨,方亮,许少锋. 含水条件下单晶Cu的应力松弛及弹性恢复[J]. 金属学报, 2019, 55(8): 1034-1040.
[9] 王瑾, 余黎明, 李冲, 黄远, 李会军, 刘永长. 不同温度对含与不含位错α-Fe中He原子行为的影响[J]. 金属学报, 2019, 55(2): 274-280.
[10] 涂爱东, 滕春禹, 王皞, 徐东生, 傅耘, 任占勇, 杨锐. Ti-Al合金γ/α2界面结构及拉伸变形行为的分子动力学模拟[J]. 金属学报, 2019, 55(2): 291-298.
[11] 张海峰, 闫海乐, 贾楠, 金剑锋, 赵骧. Cu/Ti纳米层状复合体塑性变形机制的分子动力学模拟研究[J]. 金属学报, 2018, 54(9): 1333-1342.
[12] 赵鹏越, 郭永博, 白清顺, 张飞虎. 基于微观结构的多晶Cu纳米压痕表面缺陷研究[J]. 金属学报, 2018, 54(7): 1051-1058.
[13] 樊丹丹, 许军锋, 钟亚男, 坚增运. 过热温度和冷却速率对过冷Ti熔体凝固过程的影响[J]. 金属学报, 2018, 54(6): 844-850.
[14] 王瑾, 余黎明, 黄远, 李会军, 刘永长. 晶体取向和He浓度对bcc-Fe裂纹扩展行为的影响[J]. 金属学报, 2018, 54(1): 47-54.
[15] 彭超, 李媛, 邓永和, 彭平. 近共晶成分Ni-P非晶合金微结构特征的原子模拟分析[J]. 金属学报, 2017, 53(12): 1659-1668.