|
|
双相钛合金高温变形协调性的CPFEM研究 |
李学雄1,2,徐东生1( ),杨锐1 |
1. 中国科学院金属研究所 沈阳 110016 2. 中国科学院大学 北京 100049 |
|
Crystal Plasticity Finite Element Method Investigation of the High Temperature Deformation Consistency in Dual-Phase Titanium Alloy |
Xuexiong LI1,2,Dongsheng XU1( ),Rui YANG1 |
1. Institute of Metal Research, Chinese Academy of Science, Shenyang 110016, China 2. University of Chinese Academy of Sciences, Beijing 100049, China |
引用本文:
李学雄,徐东生,杨锐. 双相钛合金高温变形协调性的CPFEM研究[J]. 金属学报, 2019, 55(7): 928-938.
Xuexiong LI,
Dongsheng XU,
Rui YANG.
Crystal Plasticity Finite Element Method Investigation of the High Temperature Deformation Consistency in Dual-Phase Titanium Alloy[J]. Acta Metall Sin, 2019, 55(7): 928-938.
[1] | Lütjering G, Williams J C. Titanium [M]. 2nd Ed. New York: Springer, 2007: 251 | [2] | Huang B Y, Li C G, Shi L K, et al. Dictionary for Material [M]. Beijing: Chemical Industry Press, 2006: 585 | [2] | (黄伯云, 李成功, 石力开等. 中国材料工程大典 [M]. 北京: 化学工业出版社, 2006: 585) | [3] | Warwick J L W. Texture, microstructure and deformation mechanism in titanium alloys [D]. London: Imperial College London, 2013 | [4] | Britton T B, Liang H, Dunne F P E, et al. The effect of crystal orientation on the indentation response of commercially pure titanium: Experiments and simulations [J]. Proc. Roy. Soc., 2010, 466A: 695 | [5] | Wilkinson A J, Clarke E E, Britton T B, et al. High-resolution electron backscatter diffraction: An emerging tool for studying local deformation [J]. J. Strain Anal. Eng. Des., 2010, 45: 365 | [6] | Tamura I, Tomota Y, Yamaoka Y, et al. The Strength and ductility of two-phase iron alloys [J]. Tetsu Hagané, 1973, 59: 454 | [6] | (田村 今男, 友田 陽, 山岡 幸男等. 二相混合組織をもつ鉄合金の強度と延性について [J]. 鉄と鋼, 1973, 59: 454 | [7] | Fan X G, Yang H. Internal-state-variable based self-consistent constitutive modeling for hot working of two-phase titanium alloys coupling microstructure evolution [J]. Int. J. Plast., 2011, 27: 1833 | [8] | Katani S, Madadi F, Atapour M, et al. Micromechanical modelling of damage behaviour of Ti-6Al-4V [J]. Mater. Des., 2013, 49: 1016 | [9] | Neti S, Vijayshankar M N, Ankem S. Finite element method modeling of deformation behavior of two-phase materials part I: Stress-strain relations [J]. Mater. Sci. Eng., 1991, A145: 47 | [10] | Zang X L, Zhao X Q, Joongkeun P, et al. Numerical simulation on distribution of micro stress-strain in dual-phase titanium alloys [J]. Rare Met. Mater. Eng., 2009, 38: 1058 | [10] | (臧新良, 赵希庆, Joongkeun P等. 双相钛合金微观应力-应变分布的数值模拟 [J]. 稀有金属材料与工程, 2009, 38: 1058) | [11] | Kuang S, Kang Y L, Yu H, et al. Stress-strain partitioning analysis of constituent phases in dual phase steel based on the modified law of mixture [J]. Int. J. Miner. Metall. Mater., 2009, 16: 393 | [12] | Roters F, Eisenlohr P, Hantcherli L, et al. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications [J]. Acta Mater., 2010, 58: 1152 | [13] | Tang B, Xie S, Liu Y, et al. Crystal plasticity finite element study of incompatible deformation behavior in two phase microstructure in near β titanium alloy [J]. Rare Met. Mater. Eng., 2015, 44: 532 | [14] | Asaro R J, Needleman A. Overview no.42 Texture development and strain hardening in rate dependent polycrystals [J]. Acta Metall., 1985, 33: 923 | [15] | Peirce D, Asaro R J, Needleman A. An analysis of nonuniform and localized deformation in ductile single crystals [J]. Acta Metall., 1982, 30: 1087 | [16] | Hill R. Generalized constitutive relations for incremental deformation of metal crystals by multislip [J]. J. Mech. Phys. Solids, 1966, 14: 95 | [17] | Hill R, Rice J R. Constitutive analysis of elastic-plastic crystals at arbitrary strain [J]. J. Mech. Phys. Solids, 1972, 20: 401 | [18] | Hutchinson J W. Bounds and self-consistent estimates for creep of polycrystalline materials [J]. Proc. Roy. Soc., 1976, 348A: 101 | [19] | Bassani J L, Wu T Y. Latent hardening in single crystals. II. Analytical characterization and predictions [J]. Proc. Roy. Soc., 1991, 435A: 21 | [20] | Peirce D, Asaro R J, Needleman A. Material rate dependence and localized deformation in crystalline solids [J]. Acta Metall., 1983, 31: 1951 | [21] | Salkind N J. Encyclopedia of Research Design [M]. Thousand Oaks, Calif: SAGE, 2010: 170 | [22] | Quey R, Dawson P R, Barbe F. Large-scale 3D random polycrystals for the finite element method: Generation, meshing and remeshing [J]. Comput. Methods Appl. Mech. Eng., 2011, 200: 1729 | [23] | Si L Y, Deng G Y, Lv C, et al. Polycrystal geometry modeling of crystal plasticity finite element method with Voronoi diagram [J]. J. Mater. Metall., 2009, 8: 193 | [23] | (司良英, 邓关宇, 吕 程等. 基于Voronoi图的晶体塑性有限元多晶几何建模 [J]. 材料与冶金学报, 2009, 8: 193) | [24] | Balasubramanian S, Anand L. Plasticity of initially textured hexagonal polycrystals at high homologous temperatures: Application to titanium [J]. Acta Mater., 2002, 50: 133 | [25] | Simmons G, Wang H. Single Crystal Elastic Constants and Calculated Aggregate Properties [M]. 2nd Ed., Cambridge: The MIT Press, 1971: 199 | [26] | Ogi H, Kai S, Ledbetter H, et al. Titanium's high-temperature elastic constants through the hcp-bcc phase transformation [J]. Acta Mater., 2004, 52: 2075 | [27] | Duan Y P. Research on mesoscopic research and simulation on hot deformation microstructure in TB8 alloy [D]. Hefei: Hefei University of Technology, 2009 | [27] | (段园培. TB8合金热变形组织介观尺度研究与模拟 [D]. 合肥: 合肥工业大学, 2009) | [28] | Ma Y J, Li J W, Lei J F, et al. Influences of microstructure on fatigue crack propagating path and crack growth rates in TC4ELI alloy [J]. Acta Metall. Sin., 2010, 46: 1086 | [28] | (马英杰, 李晋炜, 雷家峰等. 显微组织对TC4ELI合金疲劳裂纹扩展路径及扩展速率的影响 [J]. 金属学报, 2010, 46: 1086) | [29] | Song M, Ma Y J, Wu J, et al. Effect of cooling rate on microstructure and properties of Ti-5.8Al-3Mo-1Cr-2Sn-2Zr-1V-0.15Si alloy [J]. Chin. J. Nonferrous Met., 2010, 20(Spec.1): s588 | [29] | (宋 淼, 马英杰, 邬 军等. 冷却速率对Ti-5.8Al-3Mo-1Cr-2Sn-2Zr-1V-0.15Si合金组织及性能的影响 [J]. 中国有色金属学报, 2010, 20(专辑1): s588) | [30] | Gu X Y, Xu D S, Wang H, et al. Lattice weakening by edge dislocation core under tension [J]. Modell. Simul. Mater. Sci. Eng., 2010, 18: 065004 | [31] | Wu H N, Xu D S, Wang H, et al. Molecular dynamics simulation of tensile deformation and fracture of γ-TiAl with and without surface defects [J]. J. Mater. Sci. Technol., 2016, 32: 1033 | [32] | Wang H, Xu D S, Yang R. Defect clustering upon dislocation annihilation in α-titanium and α-zirconium with hexagonal close-packed structure [J]. Modell. Simul. Mater. Sci. Eng., 2014, 22: 085004 | [33] | Peters M, Gysler A, Lütjering G. Influence of texture on fatigue properties of Ti-6Al-4V [J]. Metall. Mater. Trans., 1984, 15A: 1597 | [34] | Peters M, Luetjering G. Control of microstructure and texture in Ti-6Al-4V alloy [A]. Titanium'80, Science and Technology: Proceedings of the Fourth International Conference on Titanium [C]. Warrendale, PA: TMS, 1980: 925 | [35] | Bache M R, Evans W J. Impact of texture on mechanical properties in an advanced titanium alloy [J]. Mater. Sci. Eng., 2001, A319: 409 | [36] | Paton N E, Backofen W A. Plastic deformation of Titanium at elevated temperatures [J]. Metall. Trans., 1970, 1: 2839 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|