Please wait a minute...
金属学报  2018, Vol. 54 Issue (4): 566-574    DOI: 10.11900/0412.1961.2017.00240
  本期目录 | 过刊浏览 |
定向凝固镍基高温合金DZ466表面CoAl涂层的氧化及组织演变
任维鹏1(), 李青1, 黄强1, 肖程波1, 何利民2
1 北京航空材料研究院先进高温结构材料重点实验室 北京 100095
2 北京航空材料研究院航空材料先进腐蚀与防护航空科技重点实验室 北京 100095
Oxidation and Microstructure Evolution of CoAl Coating on Directionally Solidified Ni-Based Superalloys DZ466
Weipeng REN1(), Qing LI1, Qiang HUANG1, Chengbo XIAO1, Limin HE2
1 Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095, China
2 Aviation Key Laboratory of Science and Technology on Advanced Corrosion and Protection for Aviation Materials, Beijing Institute of Aeronautical Materials, Beijing 100095, China
引用本文:

任维鹏, 李青, 黄强, 肖程波, 何利民. 定向凝固镍基高温合金DZ466表面CoAl涂层的氧化及组织演变[J]. 金属学报, 2018, 54(4): 566-574.
Weipeng REN, Qing LI, Qiang HUANG, Chengbo XIAO, Limin HE. Oxidation and Microstructure Evolution of CoAl Coating on Directionally Solidified Ni-Based Superalloys DZ466[J]. Acta Metall Sin, 2018, 54(4): 566-574.

全文: PDF(4959 KB)   HTML
摘要: 

采用低压化学气相沉积法(LP-CVD)在定向凝固镍基高温合金DZ466表面制备CoAl涂层,通过900 ℃下约5000 h恒温热暴露实验,研究了DZ466合金及其表面CoAl涂层的高温氧化行为和内部组织演变。结果表明,由于CoAl涂层Al含量较高,促进了表面Al2O3的形成,改善了DZ466合金900 ℃抗氧化性能。揭示了热暴露过程中CoAl涂层基体相及析出相的演变规律,涂层的基体相由β-NiAl/CoAl相逐渐转化为γ'-Ni3Al相,涂层与基体合金间的元素互扩散促使基体相转变优先在靠近基体合金侧进行。热暴露后,CoAl涂层中间层中析出α-Cr相,α-Cr相倾向于在碳化物附近形核并依附于碳化物生长。涂层内层中有针状TCP相(μ相)析出,μ相的整齐排列形态与γ/γ'的立方化组织密切相关。涂层内部组织演变存在遗传效应。

关键词 镍基高温合金DZ466CoAl涂层氧化    
Abstract

Aluminide coatings are widely employed to protect internal cooling channels of high grades blades and buckets in gas turbines have always been in severe conditions including high temperature oxidation and hot corrosion. There is a major concern for the application of aluminide coatings that refer to the inter-diffusion between aluminide coating and superalloy substrate at high temperatures. Diffusion of Al from the coating to the underlying substrate usually leads to depletion of Al in the coating, resulting in inferior oxidation resistance of the coating. Accordingly, Ni declines to diffuse counter currently from the substrate into the coating, as well as other refractory elements, such as Cr, Mo and W etc.. The inter-diffusion between aluminide coating and superalloy substrate results in degradation or various evolution behaviors of aluminide coatings, in other words, substrate composition significantly affects the properties of aluminide coatings. CoAl coating was prepared on directionally solidified superalloy DZ466 by low pressure chemical vapour deposition (LP-CVD). Oxidation behavior and microstructure evolution of CoAl coating was investigated during long term (about 5000 h) exposure at 900 ℃. Results suggested that, high concentration of aluminum did help to form Al2O3 on the surface of coating, improving oxidation resistance of DZ466 at 900 ℃. Evolution of matrix phase and precipitates in the CoAl coating during exposure was displayed, β-NiAl/CoAl phase in the coating transformed gradually to γ'-Ni3Al phase, higher transformation rate for the γ' phase closed to the substrate due to the diffusion between the coating and the sub strate superalloy. During exposure, α-Cr phase precipitated in the middle layer, which inclined to form close to carbides and grow by consuming them. Needle like TCP phase (μ phase) grew in the inner layer that arranged in order, which was due to the cubic microstructure of γ/γ'. Heredity-effect was in company with the precipitates evolution.

Key wordsNi-based superalloy    DZ466    CoAl    coating    oxidation
收稿日期: 2017-06-16     
ZTFLH:  TG174.4  
基金资助:国家科技重大专项项目No.2012ZX04007-021-03
作者简介:

作者简介 任维鹏,男,1984年生,博士

图1  DZ466合金及DZ466-CoAl试样900 ℃热暴露时的氧化动力学曲线
图2  DZ466-CoAl试样沉积态及900 ℃热暴露不同时间后表面宏观形貌
图3  DZ466-CoAl试样沉积态及900 ℃热暴露500 h后表面XRD谱
图4  DZ466-CoAl沉积态及900 ℃热暴露不同时间后表面微观组织的SEM像和EDS分析
图5  DZ466-CoAl沉积态及900 ℃下热暴露5029 h后截面微观组织的SEM像
Phase Al Co Ni Ti Cr Mo W Hf Ta
β-NiAl/CoAl 27.39 7.98 61.69 0.56 0.78 - - - -
β 19.21 7.56 63.26 0.88 5.99 - - - -
MC - 2.80 5.37 2.93 1.09 - - 48.99 37.26
M6C - 7.55 10.27 0.68 13.56 7.80 46.37 - 12.88
M23C6 2.69 12.56 23.46 3.78 32.91 6.99 16.34 - -
μ 1.57 6.99 25.37 0.87 10.35 8.21 35.25 - 10.17
表1  图5中各相成分的EDS分析
图6  900 ℃下CoAl涂层中γ'相的生长动力学曲线
图7  CoAl涂层组织演变示意图[18]
[1] Liu L, Yang F, Wu Y.Preparation of Si-modified aluminide coating by CVD process[J]. Heat Treat. Met., 2016, 41(7): 79(刘磊, 杨甫, 吴勇. 硅改性铝化物涂层的CVD制备工艺[J]. 金属热处理, 2016, 41(7): 79)
[2] Dai J W, Yi J, Wang Z K, et al.High temperature oxidation behavior of Pt modified aluminide coating on single crystal superalloy[J]. J. Aeronaut. Mater., 2015, 35(5): 32(戴建伟, 易军, 王占考等. 单晶高温合金铂改性铝化物涂层的高温氧化行为[J]. 航空材料学报, 2015, 35(5): 32)
[3] Song P, Lu J S, Lv J G, et al.Influence factors of high temperature oxidation for Pt-modified-aluminide bond coatings[J]. Rare Met. Mater. Eng., 2010, 39: 304(宋鹏, 陆建生, 吕建国等. 铂铝涂层高温氧化的影响因素研究[J]. 稀有金属材料与工程, 2010, 39: 304)
[4] Xu Z H, Dai J W, Niu J, et al.Influence of deposition temperature on the phase structure and morphology of aluminide coatings[J]. Corros. Prot., 2013, 34: 991(许振华, 戴建伟, 牛静等. 沉积温度对铝化物涂层相结构与微观形貌的影响[J]. 腐蚀与防护, 2013, 34: 991)
[5] Mahesh R A, Jayaganthan R, Prakash S, et al.High temperature cyclic oxidation behavior of magnetron sputtered Ni-Al thin films on Ni- and Fe-based superalloys[J]. Mater. Chem. Phys., 2009, 114: 629
[6] Li H X, Qiao M, Zhou C G.Formation and cyclic oxidation resistance of Hf-Co-modified aluminide coatings on nickel base super-alloys[J]. Mater. Chem. Phys., 2014, 143: 915
[7] Liu Z J, Zhao X S, Guo H M, et al.Cyclic oxidation resistance of Ce/Co modified aluminide coatings on nickel base superalloys[J]. Corros. Sci., 2015, 94: 135
[8] Qiao M, Zhou C G.Hot corrosion behavior of Co modified NiAl coating on nickel base superalloys[J]. Corros. Sci., 2012, 63: 239
[9] Pei Y W, Zhou C G.Improved hot corrosion resistance of Dy-Co-modified aluminide coating by pack cementation process on nickel base superalloy[J]. Corros. Sci., 2016, 112: 710
[10] Liu Z J, Zhao X S, Zhou C G.Improved hot corrosion resistance of Y-Ce-Co-modified aluminide coating on nickel base superalloys by pack cementation process[J]. Corros. Sci., 2015, 92: 148
[11] Wu D L, Zhang H Y, Wei H, et al.Hot corrosion behavior of four modified aluminide coatings on DZ38G alloy[J]. J. Chin. Soc. Corros. Prot., 2014, 34: 502(吴多利, 张洪宇, 韦华等. 4种改性的铝化物涂层对DZ38G合金热腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2014, 34: 502)
[12] Chen J H, Little J A.Degradation of the platinum aluminide coating on CMSX4 at 1100 ℃[J]. Surf. Coat. Technol., 1997, 92: 69
[13] Pint B A, Zhang Y.Performance of Al-rich oxidation resistant coatings for Fe-base alloys[J]. Mater. Corros., 2015, 62: 549
[14] Shen M L, Zhu S L.Advancement of technologies for preparing high-performance aluminide coatings[J]. Aeronaut. Manuf. Technol., 2016, 21: 105(沈明礼, 朱圣龙. 先进铝化物涂层制备技术进展[J]. 航空制造技术, 2016, 21: 105)
[15] Li W Y, Jiang R R, Huang C J, et al.Effect of cold sprayed Al coating on mechanical property and corrosion behavior of friction stir welded AA2024-T351 joint[J]. Mater. Des., 2015, 65: 757
[16] Mohammadi I, Afshar A.Modification of nanostructured anodized aluminum coatings by pulse current mode[J]. Surf. Coat. Technol., 2015, 278: 48
[17] Huang L, Sun X F, Guan H R, et al.Degradation behavior of aluminide coating on directionally solidified nickel base superalloy M951[J]. Corros. Sci. Prot. Technol., 2005, 17: 34(黄粮, 孙晓峰, 管恒荣等. 定向凝固高温合金M951低压渗铝涂层的高温氧化及相变过程[J]. 腐蚀科学与防护技术, 2005, 17: 34)
[18] Ren W P, Xiao C B, Li Q, et al.Microstructure evolution of cobalt aluminide coating on nickel-based superalloys during exposure at 1050 ℃[J]. Vacuum, 2014, 106: 39
[19] Ren W P, Li Q, Song J X, et al. Oxidation and microstructure evolution of cobalt aluminide coatings on directionally solidified superalloys during long term exposure at 1000 ℃[J]. Mater. Res. Innovat., 2014, 18(S4): S4-945-S4-951
[20] Rabiei A, Evans A G.Failure mechanisms associated with the thermally grown oxide in plasma sprayed thermal barrier coatings[J]. Acta Mater., 2000, 48: 3963
[21] Puetz P, Huang X A, Lima R S, et al.Characterization of transient oxide formation on CoNiCrAlY after heat treatment in vacuum and air[J]. Surf. Coat. Technol., 2010, 205: 647
[22] Felten E J, Pettit F S.Development, growth, and adhesion of Al2O3 on platinum-aluminum alloys[J]. Oxid. Met., 1976, 10: 189
[23] Wada K, Yamaguchi N, Matsubara H.Effect of substrate rotation on texture evolution in ZrO2-4 mol. % Y2O3 layers fabricated by EB-PVD[J]. Surf. Coat. Technol., 2005, 191: 367
[24] Bourban S, Karapatis N, Hofmann H, et al.Solidification microstructure of laser remelted Al2O3-ZrO2 eutectic[J]. Acta Mater., 1997, 45: 5069
[25] Angenete J, Stiller K.Oxidation of simple and Pt-modified aluminide diffusion coatings on Ni-base superalloys—II. Oxide scale failure[J]. Oxid. Met., 2003, 60: 83
[26] Liu G M, Li M S, Ma J H, et al.Transient oxidation behavior of nanocrystalline CoCrAlY coating at 1050 ℃[J]. Trans. Nonferrous Met. Soc. China, 2007, 17: 595
[27] Grabke H J, Bramm M W, Wagemann B.The oxidation of NiAl[J]. Mater. Corros., 1996, 47: 675
[28] Brumm M W, Grabke H J.The oxidation behaviour of NiAl—I. Phase transformations in the alumina scale during oxidation of NiAl and NiAl-Cr alloys[J]. Corros. Sci., 1992, 33: 1677
[29] Pint B A, Martin J R, Hobbs L W.The oxidation mechanism of θ-Al2O3 scales[J]. Solid State Ionics, 1995, 78: 99
[30] Balmain J, Loudjani M K, Huntz A M.Microstructural and diffusional aspects of the growth of Alumina scales on β-NiAl[J]. Mater. Sci. Eng., 1997, A224: 87
[31] Manap A, Nakano A, Ogawa K.The protectiveness of thermally grown oxides on cold sprayed CoNiCrAlY bond coat in thermal barrier coating[J]. J. Therm. Spray Technol., 2012, 21: 586
[32] Guo H B, Cui Y J, Peng H, et al.Improved cyclic oxidation resistance of electron beam physical vapor deposited nano-oxide dispersed beta-NiAl coatings for Hf-containing superalloy[J]. Corros. Sci., 2010, 52: 1440
[33] Zhang L C, Heuer A H.Microstructural evolution of the nickel platinum-aluminide bond coat on electron-beam physical-vapor deposition thermal-barrier coatings during high-temperature service[J]. Metall. Mater. Trans., 2005, 36A: 43
[34] Gale W F, King J E. Microstructural development in aluminide diffusion coatings on nickel-base superalloy single crystals [J]. Surf. Coat. Technol., 1992, 54-55: 8
[35] Basuki E, Crosky A, Gleeson B.Interdiffusion behaviour in aluminide-coated René 80H at 1150 ℃[J]. Mater. Sci. Eng., 1997, A224: 27
[36] Holmes J W, McClintock F A. The chemical and mechanical processes of thermal fatigue degradation of an aluminide coating[J]. Metall. Trans., 1990, 21A: 1209
[37] Zhang Y H, Knowles D M, Withers P J.Microstructural development in Pt-aluminide coating on CMSX-4 superalloy during TMF[J]. Surf. Coat. Technol., 1998, 107: 76
[38] González M A, Martínez D I, Saucedo C T, et al.Microstructural evolution of Pt-aluminide coating influencedby cycle oxidation service conditions[J]. Eng. Fail. Anal., 2013, 29: 122
[39] Ross E W, Sims C T. Superalloys II, Nickel-Base Alloys[M]. New York: Wiley, 1987: 98
[40] Guo J T.Materials Science and Engineering for Superalloys [M]. Beijing: Science Press, 2008: 92(郭建亭. 高温合金材料学 [M]. 上册. 北京: 科学出版社, 2008: 92)
[41] Kong Y H, Chen Q Z.Effect of minor additions on the formation of TCP phases in modified RR2086 SX superalloys[J]. Mater. Sci. Eng., 2004, A366: 135
[1] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[6] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[7] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[8] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[9] 冯力, 王贵平, 马凯, 杨伟杰, 安国升, 李文生. 冷喷涂辅助感应重熔合成AlCo x CrFeNiCu高熵合金涂层的显微组织和性能[J]. 金属学报, 2023, 59(5): 703-712.
[10] 黄鼎, 乔岩欣, 杨兰兰, 王金龙, 陈明辉, 朱圣龙, 王福会. 基体表面喷丸处理对纳米晶涂层循环氧化行为的影响[J]. 金属学报, 2023, 59(5): 668-678.
[11] 王京阳, 孙鲁超, 罗颐秀, 田志林, 任孝旻, 张洁. 以抗CMAS腐蚀为目标的稀土硅酸盐环境障涂层高熵化设计与性能提升[J]. 金属学报, 2023, 59(4): 523-536.
[12] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[13] 王迪, 贺莉丽, 王栋, 王莉, 张思倩, 董加胜, 陈立佳, 张健. Pt-Al涂层对DD413合金高温拉伸性能的影响[J]. 金属学报, 2023, 59(3): 424-434.
[14] 刘来娣, 丁彪, 任维丽, 钟云波, 王晖, 王秋良. DZ445镍基高温合金高温长时间氧化形成的多层膜结构[J]. 金属学报, 2023, 59(3): 387-398.
[15] 李斗, 徐长江, 李旭光, 李双明, 钟宏. La掺杂PCeyFe3CoSb12 热电材料及涂层的热电性能[J]. 金属学报, 2023, 59(2): 237-247.