Please wait a minute...
金属学报  2018, Vol. 54 Issue (4): 485-493    DOI: 10.11900/0412.1961.2017.00151
  本期目录 | 过刊浏览 |
节Ni型2101双相不锈钢的高温热加工行为研究
苏煜森, 杨银辉(), 曹建春, 白于良
昆明理工大学材料科学与工程学院 昆明 650093
Research on Hot Working Behavior of Low-NickelDuplex Stainless Steel 2101
Yusen SU, Yinhui YANG(), Jianchun CAO, Yuliang BAI
School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
引用本文:

苏煜森, 杨银辉, 曹建春, 白于良. 节Ni型2101双相不锈钢的高温热加工行为研究[J]. 金属学报, 2018, 54(4): 485-493.
Yusen SU, Yinhui YANG, Jianchun CAO, Yuliang BAI. Research on Hot Working Behavior of Low-NickelDuplex Stainless Steel 2101[J]. Acta Metall Sin, 2018, 54(4): 485-493.

全文: PDF(7433 KB)   HTML
摘要: 

采用Gleeble-3800热力模拟试验机在温度为1123~1423 K、应变速率为0.001~10 s-1的条件下对2101双相不锈钢进行了热压缩实验,以研究热变形参数对其热加工行为的影响规律。结果表明,相同应变速率下,随温度升高,流变曲线由动态再结晶向动态回复转变。变形速率由0.001 s-1增至0.01和0.1 s-1提高了动态再结晶温度范围,而1和10 s-1的较高应变速率不利于动态再结晶。在应变速率为0.001~0.1s-1、变形温度为1253~1323 K时,峰值应力所对应的应变越小,奥氏体动态再结晶越容易发生,有利于等轴状再结晶组织形成。低应变速率下,变形温度升高使奥氏体再结晶晶粒长大,且Zener-Hollomon参数较大时,动态再结晶效果变差与Mn稳定奥氏体能力较Ni弱有关。基于热变形方程计算得到该不锈钢热变形激活能Q=464.49 kJ/mol,略高于2205双相不锈钢,并建立了峰值流变应力本构方程。结合不同变形条件下的应变曲线和显微组织,根据热加工图确定了最佳热加工区域为应变速率在0.001~0.1 s-1、变形温度为1220~1350 K,该区域功率耗散系数处于0.40~0.47的较高值,发生了明显奥氏体动态再结晶。

关键词 2101双相不锈钢热变形动态再结晶本构方程热加工图    
Abstract

The thermal deformation difference of two phases for duplex stainless steel (DSS) makes hot working difficult, 2101 DSS substitute Mn, N for Ni to stabilize austenite phase, which will significantly affect hot deformation behavior. Hot compression tests in the temperature ranging from 1123 to 1423 K and strain rate ranging from 0.001 to 10 s-1 were carried out on a Gleeble-3800 thermal simulator for 2101 DSS. At the same strain rate, the flow curve characteristics of 2101 DSS changed from dynamic recrystallization (DRX) to dynamic recovery with increasing deformation temperature. Increasing deformation stain rate from 0.001 s-1 to 0.01 and 0.1 s-1 increased DRX temperature range, but higher strain rate of 1 and 10 s-1 is not beneficial to DRX occurrence. In the deformation temperature region of 1253~1323 K and low strain rate of 0.001~0.1 s-1, the smaller strain value corresponding to the peak stress, the austenite DRX is more likely to occur, which is beneficial to the equiaxed recrystallized grains formation. At low strain rate, the recrystallization grain grows up with the increase of deformation temperature, the worse effect of austenite DRX is related to weakened austenite stabilized ability of Mn substitution for Ni at high Zener-Hollomon parameter values. Based on the thermal deformation equation, the apparent activation energy Q was calculated as 464.49 kJ/mol, which is slightly higher than that of 2205 DSS, and the constitutive equation of the peak flow stress was established. By combining with flow curve and microstructure analysis, the processing map exhibits the optimum processing conditions are in deformation temperature ranging from 1220 to 1350 K and strain rate ranging from 0.001 to 0.1 s-1 with high power dissipation coefficient of 0.40~0.47, under which the austenite DRX obviously occurred.

Key words2101 duplex stainless steel    hot deformation    dynamic recrystallization    constitutive equation    hot working drawing
收稿日期: 2017-04-25     
ZTFLH:  TG142  
基金资助:国家自然科学基金项目No.51461024
作者简介:

作者简介 苏煜森,男,1993年生,硕士生

图1  不同热变形条件下2101双相不锈钢的真应力-真应变曲线
图2  2101双相不锈钢在不同应变速率及温度下的典型OM像
图3  2101双相不锈钢峰值应力与应变速率和变形温度的关系
图4  lnZ-ln[sinh(ασ)]关系曲线
图5  不同真应变下的2101双相不锈钢的热加工图
ε Parameter range of the optimal machining area Power dissipation Microstructural
T / K ε˙/ s-1 coefficient image
0.3 1123~1210 0.008~0.019 0.40~0.47 Fig.2d
0.4 1220~1255 0.001~0.003 0.40~0.45 Figs.2c and e
1305~1340 0.0013~0.05
0.5 1270~1310 0.001~0.0025 0.40~0.45 Fig.2e
1315~1350 0.0033~0.067
0.6 1155~1200 0.001~0.003 0.406~0.47 Figs.2b and g
1220~1280 0.01~0.1
表1  4个真应变下的最佳加工工艺参数范围及其所对应的功率耗散因子和显微组织
[1] Charles J, Chemelle P.The history of duplex developments, nowadays DSS properties andduplex market future trends[J]. World Iron Steel, 2012, 144: 477
[2] Feng H, Zhou X Y, Liu H, et al.Development and trend of hyper duplex stainless steels[J]. J. Iron. Steel. Res., 2015, 27(4): 1(丰涵, 周晓玉, 刘虎等. 特超级双相不锈钢的发展现状及趋势[J]. 钢铁研究学报, 2015, 27(4): 1)
[3] Gao W, Luo J M, Yang J J.Research progress and application of double phase stainless steel[J]. Ordnance. Mater. Sci. Eng., 2005, 28(3): 61(高娃, 罗建民, 杨建君. 双相不锈钢的研究进展及其应用[J]. 兵器材料科学与工程, 2005, 28(3): 61)
[4] Du C F, Zhan F, Yang Y H, et al.Research progress in nickel-saving duplex stainless steel[J]. Met. Funct. Mater., 2010, 17(5): 63(杜春风, 詹凤, 杨银辉等. 节镍型双相不锈钢的研究进展[J]. 金属功能材料, 2010, 17(5): 63)
[5] Nilsson J O, Kangas P, Wilson A, et al.Mechanical properties, microstructural stability and kinetics of σ-phase formation in 29Cr-6Ni-2Mo-0.38N superduplex stainless steel[J]. Metall. Mater. Trans., 2000, 31A: 35
[6] Han D, Jiang Y M, Deng B, et al.Effect of aging time on electrochemical corrosion behavior of 2101 duplex stainless steel[J]. Acta Metall. Sin., 2009, 45: 919(韩冬, 蒋益明, 邓博等. 时效时间对2101双相不锈钢电化学腐蚀行为的影响[J]. 金属学报, 2009, 45: 919)
[7] He Y, Zhang C L, Wang J, et al.Effects of aging temperature on intergranular corrosion behavior of S32101 lean duplex stainless steel[J]. Corros. Sci. Prot. Technol., 2016, 28: 241(何燕, 张彩丽, 王剑等. 时效温度对节镍双相不锈钢S32101晶间腐蚀行为影响的研究[J]. 腐蚀科学与防护技术, 2016, 28: 241)
[8] Shi F, Wang L J, Cui W F, et al.Precipitation behavior of M2N in a high-nitrogen austenitic stainless steel during isothermal aging[J]. Acta Metall. Sin.(Engl. Lett.), 2007, 20: 95
[9] Fang Y L, Liu Z Y, Wang G D.Effect of isothermal aging on precipitation behavior of lean duplex stainless steel 2101[J]. J. Iron. Steel. Res., 2010, 22(6): 21(方轶琉, 刘振宇, 王国栋. 等温时效对节约型双相不锈钢2101析出行为的影响[J]. 钢铁研究学报, 2010, 22(6): 21)
[10] Lin H X, Fan Y G, Zhou S P.Study on uniform corrosion resistance of 22Cr duplex stainless steel[J]. Corros. Protect. Petrochem. Ind., 2008, 25(6): 10(林红先, 樊玉光, 周三平. 22Cr双相不锈钢耐均匀腐蚀性能的研究[J]. 石油化工腐蚀与防护, 2008, 25(6): 10)
[11] Yang Y H, Yan B.Effect of high temperature compression deformation strain rate on the microstructure and corrosion behavior of 2205 duplex stainless steel[J]. Anti-Corros. Methods Mater., 2015, 62: 163
[12] Zhao K W.Study on hot deformation behavior of 00Cr22Ni5Mo-3N duplex stainless steel [D]. Lanzhou: Lanzhou University of Technology, 2010(赵科巍. 2205双相不锈钢的高温变形过程及其机理研究 [D]. 兰州: 兰州理工大学, 2010)
[13] Wang Y X, Liu Z Y, Wang G D, et al.Laboratory study on hot deformation behavior of 2205 duplex stainless steel[J]. J. Plast. Eng., 2012, 19(4): 89(王月香, 刘振宇, 王国栋等. 双相不锈钢2205热变形行为的实验[J]. 塑性工程学报, 2012, 19(4): 89)
[14] Wang J F, Wang Y X, Hua F A, et al.Static softening behavior and microstructures analysis of duplex stainless steel after hot deformation[J]. J. Iron. Steel. Res., 2011, 23(9): 46(王佳夫, 王月香, 花福安等. 双相不锈钢热变形后的静态软化行为及组织分析[J]. 钢铁研究学报, 2011, 23(9): 46)
[15] Liu Y Y.Study on microstruture and property evolution of LDX2101 during thermal deformation [D]. Hangzhou: Zhejiang University, 2013(刘彦妍. 2101双相不锈钢热变形过程微观组织与性能演变的研究 [D]. 杭州: 浙江大学, 2013)
[16] Fang Y L, Liu Z Y, Zhang W N, et al.Microstructure evolution of lean duplex stainless steel 2101 during hot deformation[J]. Acta Metall. Sin., 2010, 46: 641(方轶琉, 刘振宇, 张维娜等. 节约型双相不锈钢2101高温变形过程中微观组织演化[J]. 金属学报, 2010, 46: 641)
[17] Du S W, Chen S M.Hot deformation behavior and processing maps of LZ50 steel[J]. Trans. Mater. Heat. Treat., 2016, 37: 223(杜诗文, 陈双梅. LZ50钢的热变形行为及热加工图[J]. 材料热处理学报, 2016, 37: 223)
[18] Sellars C M, Mctegart W J.On the mechanism of hot deformation[J]. Acta Metall., 1966, 14: 1136
[19] Wu K.Study on hot deformation behavior and mechanism of economical duplex stainless steel 2101 [D]. Xi'an: Xi'an University of Architecture and Technology, 2013(吴琨. 经济型双相不锈钢2101高温变形行为及机理研究 [D]. 西安: 西安建筑科技大学, 2013)
[20] Duprez L, Cooman B C D, Akdut N. Flow stress and ductility of duplex stainless steel during high-temperature torsion deformation[J]. Metall. Mater. Trans., 2002, 33A: 1931
[21] Chen L, Wang L M, Du X J, et al.Hot deformation behavior of 2205 duplex stainless steel[J]. Acta Metall. Sin., 2010, 46: 52(陈雷, 王龙妹, 杜晓建等. 2205双相不锈钢的高温变形行为[J]. 金属学报, 2010, 46: 52)
[22] Cabrera J M, Mateo A, Llanes L, et al. Hot deformation of duplex stainless steels [J]. J. Mater. Process. Technol., 2003, 143-144: 321
[23] Farnoush H, Momeni A, Dehghani K, et al.Hot deformation characteristics of 2205 duplex stainless steel based on the behavior of constituent phases[J]. Mater. Des., 2010, 31: 220
[24] Prasad Y V R K, Gegel H L, Doraivelu S M, et al. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242[J]. Metall. Mater. Trans., 1984, 15A: 1883
[1] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[2] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[3] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[4] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[5] 孙毅, 郑沁园, 胡宝佳, 王平, 郑成武, 李殿中. 3Mn-0.2C中锰钢形变诱导铁素体动态相变机理[J]. 金属学报, 2022, 58(5): 649-659.
[6] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[7] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.
[8] 颜孟奇, 陈立全, 杨平, 黄利军, 佟健博, 李焕峰, 郭鹏达. 热变形参数对TC18钛合金β相组织及织构演变规律的影响[J]. 金属学报, 2021, 57(7): 880-890.
[9] 倪珂, 杨银辉, 曹建春, 王刘行, 刘泽辉, 钱昊. 18.7Cr-1.0Ni-5.8Mn-0.2NNi型双相不锈钢的大变形热压缩软化行为[J]. 金属学报, 2021, 57(2): 224-236.
[10] 刘庆琦, 卢晔, 张翼飞, 范笑锋, 李瑞, 刘兴硕, 佟雪, 于鹏飞, 李工. Al19.3Co15Cr15Ni50.7高熵合金的热变形行为[J]. 金属学报, 2021, 57(10): 1299-1308.
[11] 刘超, 姚志浩, 江河, 董建新. GH4720Li合金毫米级粗大晶粒热变形获得均匀等轴晶粒的可行性及工艺控制[J]. 金属学报, 2021, 57(10): 1309-1319.
[12] 周丽, 李明, 王全兆, 崔超, 肖伯律, 马宗义. 31%B4Cp/6061Al复合材料的热变形及加工图的研究[J]. 金属学报, 2020, 56(8): 1155-1164.
[13] 李天瑞, 刘国怀, 于少霞, 王文娟, 张风奕, 彭全义, 王昭东. 直接包套轧制铸态Ti-46Al-8Nb合金的组织特征及热变形机制[J]. 金属学报, 2020, 56(8): 1091-1102.
[14] 赵嫚嫚, 秦森, 冯捷, 代永娟, 国栋. AlNi1Cr9Al(1~3)Ni(1~7)WVNbB钢热变形行为的影响[J]. 金属学报, 2020, 56(7): 960-968.
[15] 陈文雄, 胡宝佳, 贾春妮, 郑成武, 李殿中. 热变形后Ni-30%Fe模型合金中奥氏体的亚动态软化行为[J]. 金属学报, 2020, 56(6): 874-884.