Please wait a minute...
金属学报  2018, Vol. 54 Issue (2): 204-216    DOI: 10.11900/0412.1961.2017.00425
  本期目录 | 过刊浏览 |
原子尺度下凝固形核计算模拟研究的进展
王锦程(), 郭灿, 张琪, 唐赛, 李俊杰, 王志军
西北工业大学凝固技术国家重点实验室 西安 710072
Recent Progresses in Modeling of Nucleation During Solidification on the Atomic Scale
Jincheng WANG(), Can GUO, Qi ZHANG, Sai TANG, Junjie LI, Zhijun WANG
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
引用本文:

王锦程, 郭灿, 张琪, 唐赛, 李俊杰, 王志军. 原子尺度下凝固形核计算模拟研究的进展[J]. 金属学报, 2018, 54(2): 204-216.
Jincheng WANG, Can GUO, Qi ZHANG, Sai TANG, Junjie LI, Zhijun WANG. Recent Progresses in Modeling of Nucleation During Solidification on the Atomic Scale[J]. Acta Metall Sin, 2018, 54(2): 204-216.

全文: PDF(8443 KB)   HTML
摘要: 

形核是一级不连续相变的起点,对后续材料组织的形成及最终产品的性能具有重要影响。形核过程、机制及其控制一直是材料科学和凝聚态物理等领域中最为活跃的研究课题之一。形核过程发生在原子空间尺度及扩散时间尺度,同时还具有随机性,因此充分认识形核过程将面临极大的挑战。受实验条件的限制,目前难以通过实验方法直接观测金属凝固中晶核的形成过程。近年来,随着计算材料科学的兴起,借助于数值模拟方法,凝固形核问题研究取得了很大的进展。本文首先回顾了形核理论的发展历程,然后对当前凝固形核模拟的研究进展进行述评,并介绍本课题组近年来基于晶体相场模型在形核研究方面的工作进展,最后对形核研究进行了展望。

关键词 凝固形核数值模拟研究进展    
Abstract

Nucleation, the starting point of first-order discontinuous phase transformations, has long been an important issue in condensed matter physics and materials science. It plays a key role in determining the microstructures and mechanical properties of crystalline materials. As nucleation occurs at the atomic length scale and the diffusional time scale and is a typical stochastic event, investigating such kind of multiple scale issues will be taken up an enormous challenge. Because of the limitations of present experimental methods, it is still very hard to observe the nucleation process in situ. With the development of computational materials science, a deeper understanding of nucleation process has been obtained with the numerical modeling of nucleation process on the atomic scale. In this paper, some recent developments in modeling and simulation of nucleation process during solidification on the atomic scale are reviewed. Firstly, the development of classical nucleation theory and the step nucleation theory are reviewed. Then the developments in modeling of nucleation process by using the phase field method, Monte-Carlo method, Molecular dynamics method and the phase field crystal model are discussed. After that, some recent progresses in modeling of nucleation process during solidification in our research group by using the phase field crystal model are demonstrated. Finally, the outlooks of the future study on the nucleation during solidification are also presented.

Key wordssolidification    nucleation    numerical simulation    research progress
收稿日期: 2017-10-13     
基金资助:国家自然科学基金项目Nos.51371151和51571165
作者简介:

作者简介 王锦程,男,1972年生,教授,博士

图1  经典形核过程与分步形核过程能量演化曲线与结构转变路径示意图[32]
图2  噪声诱发的管状基底表面异质形核得到串型多晶结构的过程[50]
图3  不同时刻纯金属凝固形核的109原子级别超大尺度分子动力学模拟结果[16]
图4  不同初始液相原子密度ψ0 (无量纲)条件下bcc基底上异质形核过程的晶体相场法模拟结果[76]
图5  相同温度参数不同初始原子密度ψ0条件下的形核及后续生长过程原子图像[84]
图6  不同参数条件下单个晶核形核过程中结构相变原子图像[82]
图7  不同过冷度ε下的晶体形核过程[85]
图8  初始液相成分为cini=0.5,温度参数为σ =0条件下的共晶凝固过程模拟结果
[1] Kelton K F, Greer A L.Nucleation in condensed matter: Applications in materials and biology[M]. Burlington: Elsevier, 2010: 57
[2] Kashchiev D.Nucleation: Basic Theory with Applications[M]. Oxford: Butterworth-Heinemann, 2000: 120
[3] Herlach D M, Palberg T, Klassen I, et al.Overview: Experimental studies of crystal nucleation: Metals and colloids[J]. J. Chem. Phys., 2016, 145: 211703
[4] Greer A L.Overview: Application of heterogeneous nucleation in grain-refining of metals[J]. J. Chem. Phys., 2016, 145: 211704
[5] Zhang L, Ren W Q, Samanta A, et al.Recent developments in computational modelling of nucleation in phase transformations[J]. NPJ Comput. Mater., 2016, 2: 16003
[6] Sosso G C, Chen J, Cox S J, et al.Crystal nucleation in liquids: Open questions and future challenges in molecular dynamics simulations[J]. Chem. Rev., 2016, 116: 7078
[7] Harano K, Homma T, Niimi Y, et al.Heterogeneous nucleation of organic crystals mediated by single-molecule templates[J]. Nat. Mater., 2012, 11: 877
[8] Peng Y, Wang F, Wang Z R, et al.Two-step nucleation mechanism in solid-solid phase transitions[J]. Nat. Mater., 2015, 14: 101
[9] Tan P, Xu N, Xu L.Visualizing kinetic pathways of homogeneous nucleation in colloidal crystallization[J]. Nat. Phys., 2014, 10: 73
[10] Wang L, Lu W Q, Hu Q D, et al.Interfacial tuning for the nucleation of liquid AlCu alloy[J]. Acta Mater., 2017, 139: 75
[11] Zhang K Q, Liu X Y.In situ observation of colloidal monolayer nucleation driven by an alternating electric field[J]. Nature, 2004, 429: 739
[12] Gasser U, Weeks E R, Schofield A, et al.Real-space imaging of nucleation and growth in colloidal crystallization[J]. Science, 2001, 292: 258
[13] Xu Y J, Casari D, Du Q, et al.Heterogeneous nucleation and grain growth of inoculated aluminium alloys: An integrated study by insitu X-radiography and numerical modelling[J]. Acta Mater., 2017, 140: 224
[14] Auer S, Frenkel D.Prediction of absolute crystal-nucleation rate in hard-sphere colloids[J]. Nature, 2001, 409: 1020
[15] Gránásy L, Tóth G I.Crystallization: Colloidal suspense[J]. Nat. Phys., 2014, 10: 12
[16] Shibuta Y, Sakane S, Miyoshi E, et al.Heterogeneity in homogeneous nucleation from billion-atom molecular dynamics simulation of solidification of pure metal[J]. Nat. Commun., 2017, 8: 10
[17] Volmer M, Weber A.Kinetic theory for nucleation of supersaturated structures[J]. Z. Phys. Chem., 1926, 119: 277
[18] Becker R, D?ring W.Kinetische behandlung der keimbildung in bers?ttigten d?mpfen[J]. Ann. Phys., 1935, 416: 719
[19] Turnbull D, Fisher J C.Rate of nucleation in condensed systems[J]. J. Chem. Phys., 1949, 17: 71
[20] Schmelzer J W P, Gutzow I, Schmelzer J Jr. Curvature-dependent surface tension and nucleation theory[J]. J. Colloid Interface Sci., 1996, 178: 657
[21] Cahn J W, Hilliard J E.Free energy of a nonuniform system. III. Nucleation in a two-component incompressible fluid[J]. J. Chem. Phys., 1959, 31: 688
[22] Gránásy L, James P F.Nucleation and growth in cluster dynamics: A quantitative test of the classical kinetic approach[J]. J. Chem. Phys., 2000, 113: 9810
[23] Gránásy L.Nucleation theory for diffuse interfaces[J]. Mater. Sci. Eng., 1994, A178: 121
[24] Quested T E, Greer A L.The effect of the size distribution of inoculant particles on as-cast grain size in aluminium alloys[J]. Acta Mater., 2004, 52: 3859
[25] Sharaf M A, Dobbins R A.A comparison of measured nucleation rates with the predictions of several theories of homogeneous nucleation[J]. J. Chem. Phys., 1982, 77: 1517
[26] Savage J R, Dinsmore A D.Experimental evidence for two-step nucleation in colloidal crystallization[J]. Phys. Rev. Lett., 2009, 102: 198302
[27] Liu J N, Shen T, Yang Z H, et al.Multistep heterogeneous nucleation in binary mixtures of charged colloidal spheres[J]. J. Phys. Chem. Lett., 2017, 8: 4652
[28] Zhang T H, Liu X Y.Nucleation: What happens at the initial stage?[J]. Angew. Chem. Int. Ed. Engl., 2009, 48: 1308
[29] Yau S T, Vekilov P G.Direct observation of nucleus structure and nucleation pathways in apoferritin crystallization[J]. J. Am. Chem. Soc., 2001, 123: 1080
[30] Vatamanu J, Kusalik P G.Observation of two-step nucleation in methane hydrates[J]. Phys. Chem. Chem. Phys., 2010, 12: 15065
[31] Xu S H, Zhou H W, Sun Z W, et al.Formation of an fcc phase through a bcc metastable state in crystallization of charged colloidal particles[J]. Phys. Rev., 2010, 82E: 010401
[32] Myerson A S, Trout B L.Nucleation from solution[J]. Science, 2013, 341: 855
[33] ten Wolde P R, Ruiz-Montero M J, Frenkel D. Numerical evidence for bcc ordering at the surface of a critical fcc nucleus[J]. Phys. Rev. Lett., 1995, 75: 2714
[34] Talanquer V, Oxtoby D W.Crystal nucleation in the presence of a metastable critical point[J]. J. Chem. Phys., 1998, 109: 223
[35] Stranski I, Totomanow D.Rate of formation of (crystal) nuclei and the ostwald step rule[J]. Z. Phys. Chem., 1933, 163: 399
[36] Yang J X, Gould H, Klein W.Molecular-dynamics investigation of deeply quenched liquids[J]. Phys. Rev. Lett., 1988, 60: 2665
[37] Swope W C, Andersen H C.106-particle molecular-dynamics study of homogeneous nucleation of crystals in a supercooled atomic liquid[J]. Phys. Rev., 1990, 41B: 7042
[38] Shen Y C, Oxtoby D W.BCC symmetry in the crystal-melt interface of Lennard-Jones fluids examined through density functional theory[J]. Phys. Rev. Lett., 1996, 77: 3585
[39] Alexander S, McTague J. Should all crystals be BCC? Landau theory of solidification and crystal nucleation[J]. Phys. Rev. Lett., 1978, 41: 702
[40] Klein W, Leyvraz F.Crystalline nucleation in deeply quenched liquids[J]. Phys. Rev. Lett., 1986, 57: 2845
[41] Moroni D, Ten Wolde P R, Bolhuis P G. Interplay between structure and size in a critical crystal nucleus[J]. Phys. Rev. Lett., 2005, 94: 235703
[42] Desgranges C, Delhommelle J.Insights into the molecular mechanism underlying polymorph selection[J]. J. Am. Chem. Soc., 2006, 128: 15104
[43] Russo J, Tanaka H.Crystal nucleation as the ordering of multiple order parameters[J]. J. Chem. Phys., 2016, 145: 211801
[44] Xu S H, Zhou H W, Sun Z W, et al.Formation of an fcc phase through a bcc metastable state in crystallization of charged colloidal particles[J]. Phys. Rev., 2010, 82E: 010401
[45] Erdemir D, Lee A Y, Myerson A S.Nucleation of crystals from solution: classical and two-step models[J]. Acc. Chem. Res., 2009, 42: 621
[46] De Yoreo J.Crystal nucleation: more than one pathway[J]. Nat. Mater., 2013, 12: 284
[47] Gebauer D, C?lfen H.Prenucleation clusters and non-classical nucleation[J]. Nano Today, 2011, 6: 564
[48] Simmons J P, Wen Y H, Shen C, et al.Microstructural development involving nucleation and growth phenomena simulated with the phase field method[J]. Mater. Sci. Eng., 2004, A365: 136
[49] Gránásy L, B?rzs?nyi T, Pusztai T.Nucleation and bulk crystallization in binary phase field theory[J]. Phys. Rev. Lett., 2002, 88: 206105
[50] Warren J A, Pusztai T, K?rnyei L, et al.Phase field approach to heterogeneous crystal nucleation in alloys[J]. Phys. Rev., 2009, 79B: 014204
[51] Hu S Y, Chen L Q.Solute segregation and coherent nucleation and growth near a dislocation—A phase-field model integrating defect and phase microstructures[J]. Acta Mater., 2001, 49: 463
[52] Zhang W, Jin Y M, Khachaturyan A G.Phase field microelasticity modeling of heterogeneous nucleation and growth in martensitic alloys[J]. Acta Mater., 2007, 55: 565
[53] Shen C, Simmons J P, Wang Y.Effect of elastic interaction on nucleation: II. Implementation of strain energy of nucleus formation in the phase field method[J]. Acta Mater., 2007, 55: 1457
[54] Rokkam S, El-Azab A, Millett P, et al.Phase field modeling of void nucleation and growth in irradiated metals[J]. Model. Simul. Mater. Sci. Eng., 2009, 17: 064002
[55] Stauffer D, Coniglio A, Heermann D W.Monte Carlo experiment for nucleation rate in the three-dimensional Ising model[J]. Phys. Rev. Lett., 1982, 49: 1299
[56] Hale B N, DiMattio D J. Scaling of the nucleation rate and a Monte Carlo discrete sum approach to water cluster free energies of formation[J]. J. Phys. Chem., 2004, 108B: 19780
[57] Yi D O, Jhon M H, Sharp I D, et al.Modeling nucleation and growth of encapsulated nanocrystals: Kinetic Monte Carlo simulations and rate theory[J]. Phys. Rev., 2008, 78B: 245415
[58] Filipponi A, Giammatteo P.Kinetic Monte Carlo simulation of the classical nucleation process[J]. J. Chem. Phys., 2016, 145: 211913
[59] Wang H, Gould H, Klein W.Homogeneous and heterogeneous nucleation of Lennard-Jones liquids[J]. Phys. Rev., 2007, 76E: 031604
[60] Page A J, Sear R P.Heterogeneous nucleation in and out of pores[J]. Phys. Rev. Lett., 2006, 97: 065701
[61] Alder B J, Wainwright T E.Phase transition for a hard sphere system[J]. J. Chem. Phys., 1957, 27: 1208
[62] Mandell M J, McTague J P, Rahman A. Crystal nucleation in a three-dimensional Lennard-Jones system: A molecular dynamics study[J]. J. Chem. Phys., 1976, 64: 3699
[63] Leines D G, Drautz R, Rogal J.Atomistic insight into the non-classical nucleation mechanism during solidification in Ni[J]. J. Chem. Phys., 2017, 146: 154702
[64] Pang H, Jin Z H, Lu K.Relaxation, nucleation, and glass transition in supercooled liquid Cu[J]. Phys. Rev., 2003, 67B: 094113
[65] Liu J, Zhao J Z, Hu Z Q.Kinetic details of the nucleation in supercooled liquid metals[J]. Appl. Phys. Lett., 2006, 89: 031903
[66] Jungblut S, Dellago C.Heterogeneous crystallization on tiny clusters[J]. Europhys. Lett., 2011, 96: 56006
[67] Wang J S, Horsfield A, Lee P D, et al.Heterogeneous nucleation of solid Al from the melt by Al3Ti: Molecular dynamics simulations[J]. Phys. Rev., 2010, 82B: 144203
[68] Palafox-Hernandez J P, Laird B B. Orientation dependence of heterogeneous nucleation at the Cu-Pb solid-liquid interface[J]. J. Chem. Phys., 2016, 145: 211914
[69] Men H, Fan Z.Atomic ordering in liquid aluminium induced by substrates with misfits[J]. Comput. Mater. Sci., 2014, 85: 1
[70] Li R, Wu Y Q, Xiao J J.The nucleation process and the roles of structure and density fluctuations in supercooled liquid Fe[J]. J. Chem. Phys., 2014, 140: 034503
[71] An S M, Li J H, Li Y, et al.Two-step crystal growth mechanism during crystallization of an undercooled Ni50Al50 alloy[J]. Sci. Rep., 2016, 6: 31062
[72] Shibuta Y, Sakane S, Takaki T, et al.Submicrometer-scale molecular dynamics simulation of nucleation and solidification from undercooled melt: Linkage between empirical interpretation and atomistic nature[J]. Acta Mater., 2016, 105: 328
[73] Elder K R, Katakowski M, Haataja M, et al.Modeling elasticity in crystal growth[J]. Phys. Rev. Lett., 2002, 88: 245701
[74] Backofen R, R?tz A, Voigt A.Nucleation and growth by a phase field crystal (PFC) model[J]. Phil. Mag. Lett., 2007, 87: 813
[75] Prieler R, Hubert J, Li D, et al.An anisotropic phase-field crystal model for heterogeneous nucleation of ellipsoidal colloids[J]. J. Phys-Condens. Matt., 2009, 21: 464110
[76] Tóth G I, Tegze G, Pusztai T, et al.Heterogeneous crystal nucleation: The effect of lattice mismatch[J]. Phys. Rev. Lett., 2012, 108: 025502
[77] Pusztai T, Tegze G, Tóth G I, et al.Phase-field approach to polycrystalline solidification including heterogeneous and homogeneous nucleation[J]. J. Phys-Condens. Matt., 2008, 20: 404205
[78] Tóth G I, Tegze G, Pusztai T, et al.Polymorphism, crystal nucleation and growth in the phase-field crystal model in 2d and 3d[J]. J. Phys. Condens. Matter, 2010, 22: 364101
[79] Podmaniczky F, Tóth G I, Tegze G, et al.Recent developments in modeling heteroepitaxy/heterogeneous bucleation by dynamical density functional theory[J]. Metall. Mater. Trans., 2015, 46A: 4908
[80] Guo Y L, Wang J C, Wang Z J, et al.Phase field crystal model for the effect of colored noise on homogenerous nucleation[J]. Acta Phys. Sin., 2012, 61: 146401(郭耀麟, 王锦程, 王志军等. 噪声对均质形核过程影响的晶体相场法研究[J]. 物理学报, 2012, 61: 146401)
[81] Guo C, Wang J C, Li J J, et al.Kinetic pathways and mechanisms of two-step nucleation in crystallization[J]. J. Phys. Chem. Lett., 2016, 7: 5008
[82] Guo C, Wang J C, Li J J, et al.Uncoupling growth mechanisms of binary eutectics during rapid solidification[J]. J. Phys. Chem., 2017, 121C: 8204
[83] Guo C, Wang J C, Wang Z J, et al.Interfacial free energy adjustable phase field crystal model for homogeneous nucleation[J]. Soft Matter, 2016, 12: 4666
[84] Guo C, Wang J C, Wang Z J.Atomistic investigation of homogeneous nucleation in undercooled liquid[J]. Philos. Mag., 2017, 97: 2255
[85] Tang S, Wang J C, Svendsen B, et al.Competitive bcc and fcc crystal nucleation from non-equilibrium liquids studied by phase-field crystal simulation[J]. Acta Mater., 2017, 139: 196
[86] Guo C, Wang J C, Li J J, et al.Coupling eutectic nucleation mechanism investigated by phase field crystal model[J]. Acta Mater., 2018, 145: 195
[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[3] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[4] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[5] 刘继浩, 周健, 武会宾, 马党参, 徐辉霞, 马志俊. 喷射成形M3高速钢偏析成因及凝固机理[J]. 金属学报, 2023, 59(5): 599-610.
[6] 赵亚峰, 刘苏杰, 陈云, 马会, 马广财, 郭翼. 铁素体-贝氏体双相钢韧性断裂过程中的夹杂物临界尺寸及孔洞生长[J]. 金属学报, 2023, 59(5): 611-622.
[7] 熊天英, 王吉强. 中国科学院金属研究所冷喷涂技术研究进展[J]. 金属学报, 2023, 59(4): 537-546.
[8] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[9] 苏震奇, 张丛江, 袁笑坦, 胡兴金, 芦可可, 任维丽, 丁彪, 郑天祥, 沈喆, 钟云波, 王晖, 王秋良. 纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化[J]. 金属学报, 2023, 59(12): 1568-1580.
[10] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[11] 周小宾, 赵占山, 汪万行, 徐建国, 岳强. 渣-金界面气泡夹带行为数值物理模拟[J]. 金属学报, 2023, 59(11): 1523-1532.
[12] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[13] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.
[14] 刘仁慈, 王鹏, 曹如心, 倪明杰, 刘冬, 崔玉友, 杨锐. 700℃热暴露对 β 凝固 γ-TiAl合金表面组织及形貌的影响[J]. 金属学报, 2022, 58(8): 1003-1012.
[15] 李闪闪, 陈云, 巩桐兆, 陈星秋, 傅排先, 李殿中. 冷速对高碳铬轴承钢液析碳化物凝固析出机制的影响[J]. 金属学报, 2022, 58(8): 1024-1034.