|
|
原子尺度下凝固形核计算模拟研究的进展 |
王锦程( ), 郭灿, 张琪, 唐赛, 李俊杰, 王志军 |
西北工业大学凝固技术国家重点实验室 西安 710072 |
|
Recent Progresses in Modeling of Nucleation During Solidification on the Atomic Scale |
Jincheng WANG( ), Can GUO, Qi ZHANG, Sai TANG, Junjie LI, Zhijun WANG |
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China |
引用本文:
王锦程, 郭灿, 张琪, 唐赛, 李俊杰, 王志军. 原子尺度下凝固形核计算模拟研究的进展[J]. 金属学报, 2018, 54(2): 204-216.
Jincheng WANG,
Can GUO,
Qi ZHANG,
Sai TANG,
Junjie LI,
Zhijun WANG.
Recent Progresses in Modeling of Nucleation During Solidification on the Atomic Scale[J]. Acta Metall Sin, 2018, 54(2): 204-216.
[1] | Kelton K F, Greer A L.Nucleation in condensed matter: Applications in materials and biology[M]. Burlington: Elsevier, 2010: 57 | [2] | Kashchiev D.Nucleation: Basic Theory with Applications[M]. Oxford: Butterworth-Heinemann, 2000: 120 | [3] | Herlach D M, Palberg T, Klassen I, et al.Overview: Experimental studies of crystal nucleation: Metals and colloids[J]. J. Chem. Phys., 2016, 145: 211703 | [4] | Greer A L.Overview: Application of heterogeneous nucleation in grain-refining of metals[J]. J. Chem. Phys., 2016, 145: 211704 | [5] | Zhang L, Ren W Q, Samanta A, et al.Recent developments in computational modelling of nucleation in phase transformations[J]. NPJ Comput. Mater., 2016, 2: 16003 | [6] | Sosso G C, Chen J, Cox S J, et al.Crystal nucleation in liquids: Open questions and future challenges in molecular dynamics simulations[J]. Chem. Rev., 2016, 116: 7078 | [7] | Harano K, Homma T, Niimi Y, et al.Heterogeneous nucleation of organic crystals mediated by single-molecule templates[J]. Nat. Mater., 2012, 11: 877 | [8] | Peng Y, Wang F, Wang Z R, et al.Two-step nucleation mechanism in solid-solid phase transitions[J]. Nat. Mater., 2015, 14: 101 | [9] | Tan P, Xu N, Xu L.Visualizing kinetic pathways of homogeneous nucleation in colloidal crystallization[J]. Nat. Phys., 2014, 10: 73 | [10] | Wang L, Lu W Q, Hu Q D, et al.Interfacial tuning for the nucleation of liquid AlCu alloy[J]. Acta Mater., 2017, 139: 75 | [11] | Zhang K Q, Liu X Y.In situ observation of colloidal monolayer nucleation driven by an alternating electric field[J]. Nature, 2004, 429: 739 | [12] | Gasser U, Weeks E R, Schofield A, et al.Real-space imaging of nucleation and growth in colloidal crystallization[J]. Science, 2001, 292: 258 | [13] | Xu Y J, Casari D, Du Q, et al.Heterogeneous nucleation and grain growth of inoculated aluminium alloys: An integrated study by insitu X-radiography and numerical modelling[J]. Acta Mater., 2017, 140: 224 | [14] | Auer S, Frenkel D.Prediction of absolute crystal-nucleation rate in hard-sphere colloids[J]. Nature, 2001, 409: 1020 | [15] | Gránásy L, Tóth G I.Crystallization: Colloidal suspense[J]. Nat. Phys., 2014, 10: 12 | [16] | Shibuta Y, Sakane S, Miyoshi E, et al.Heterogeneity in homogeneous nucleation from billion-atom molecular dynamics simulation of solidification of pure metal[J]. Nat. Commun., 2017, 8: 10 | [17] | Volmer M, Weber A.Kinetic theory for nucleation of supersaturated structures[J]. Z. Phys. Chem., 1926, 119: 277 | [18] | Becker R, D?ring W.Kinetische behandlung der keimbildung in bers?ttigten d?mpfen[J]. Ann. Phys., 1935, 416: 719 | [19] | Turnbull D, Fisher J C.Rate of nucleation in condensed systems[J]. J. Chem. Phys., 1949, 17: 71 | [20] | Schmelzer J W P, Gutzow I, Schmelzer J Jr. Curvature-dependent surface tension and nucleation theory[J]. J. Colloid Interface Sci., 1996, 178: 657 | [21] | Cahn J W, Hilliard J E.Free energy of a nonuniform system. III. Nucleation in a two-component incompressible fluid[J]. J. Chem. Phys., 1959, 31: 688 | [22] | Gránásy L, James P F.Nucleation and growth in cluster dynamics: A quantitative test of the classical kinetic approach[J]. J. Chem. Phys., 2000, 113: 9810 | [23] | Gránásy L.Nucleation theory for diffuse interfaces[J]. Mater. Sci. Eng., 1994, A178: 121 | [24] | Quested T E, Greer A L.The effect of the size distribution of inoculant particles on as-cast grain size in aluminium alloys[J]. Acta Mater., 2004, 52: 3859 | [25] | Sharaf M A, Dobbins R A.A comparison of measured nucleation rates with the predictions of several theories of homogeneous nucleation[J]. J. Chem. Phys., 1982, 77: 1517 | [26] | Savage J R, Dinsmore A D.Experimental evidence for two-step nucleation in colloidal crystallization[J]. Phys. Rev. Lett., 2009, 102: 198302 | [27] | Liu J N, Shen T, Yang Z H, et al.Multistep heterogeneous nucleation in binary mixtures of charged colloidal spheres[J]. J. Phys. Chem. Lett., 2017, 8: 4652 | [28] | Zhang T H, Liu X Y.Nucleation: What happens at the initial stage?[J]. Angew. Chem. Int. Ed. Engl., 2009, 48: 1308 | [29] | Yau S T, Vekilov P G.Direct observation of nucleus structure and nucleation pathways in apoferritin crystallization[J]. J. Am. Chem. Soc., 2001, 123: 1080 | [30] | Vatamanu J, Kusalik P G.Observation of two-step nucleation in methane hydrates[J]. Phys. Chem. Chem. Phys., 2010, 12: 15065 | [31] | Xu S H, Zhou H W, Sun Z W, et al.Formation of an fcc phase through a bcc metastable state in crystallization of charged colloidal particles[J]. Phys. Rev., 2010, 82E: 010401 | [32] | Myerson A S, Trout B L.Nucleation from solution[J]. Science, 2013, 341: 855 | [33] | ten Wolde P R, Ruiz-Montero M J, Frenkel D. Numerical evidence for bcc ordering at the surface of a critical fcc nucleus[J]. Phys. Rev. Lett., 1995, 75: 2714 | [34] | Talanquer V, Oxtoby D W.Crystal nucleation in the presence of a metastable critical point[J]. J. Chem. Phys., 1998, 109: 223 | [35] | Stranski I, Totomanow D.Rate of formation of (crystal) nuclei and the ostwald step rule[J]. Z. Phys. Chem., 1933, 163: 399 | [36] | Yang J X, Gould H, Klein W.Molecular-dynamics investigation of deeply quenched liquids[J]. Phys. Rev. Lett., 1988, 60: 2665 | [37] | Swope W C, Andersen H C.106-particle molecular-dynamics study of homogeneous nucleation of crystals in a supercooled atomic liquid[J]. Phys. Rev., 1990, 41B: 7042 | [38] | Shen Y C, Oxtoby D W.BCC symmetry in the crystal-melt interface of Lennard-Jones fluids examined through density functional theory[J]. Phys. Rev. Lett., 1996, 77: 3585 | [39] | Alexander S, McTague J. Should all crystals be BCC? Landau theory of solidification and crystal nucleation[J]. Phys. Rev. Lett., 1978, 41: 702 | [40] | Klein W, Leyvraz F.Crystalline nucleation in deeply quenched liquids[J]. Phys. Rev. Lett., 1986, 57: 2845 | [41] | Moroni D, Ten Wolde P R, Bolhuis P G. Interplay between structure and size in a critical crystal nucleus[J]. Phys. Rev. Lett., 2005, 94: 235703 | [42] | Desgranges C, Delhommelle J.Insights into the molecular mechanism underlying polymorph selection[J]. J. Am. Chem. Soc., 2006, 128: 15104 | [43] | Russo J, Tanaka H.Crystal nucleation as the ordering of multiple order parameters[J]. J. Chem. Phys., 2016, 145: 211801 | [44] | Xu S H, Zhou H W, Sun Z W, et al.Formation of an fcc phase through a bcc metastable state in crystallization of charged colloidal particles[J]. Phys. Rev., 2010, 82E: 010401 | [45] | Erdemir D, Lee A Y, Myerson A S.Nucleation of crystals from solution: classical and two-step models[J]. Acc. Chem. Res., 2009, 42: 621 | [46] | De Yoreo J.Crystal nucleation: more than one pathway[J]. Nat. Mater., 2013, 12: 284 | [47] | Gebauer D, C?lfen H.Prenucleation clusters and non-classical nucleation[J]. Nano Today, 2011, 6: 564 | [48] | Simmons J P, Wen Y H, Shen C, et al.Microstructural development involving nucleation and growth phenomena simulated with the phase field method[J]. Mater. Sci. Eng., 2004, A365: 136 | [49] | Gránásy L, B?rzs?nyi T, Pusztai T.Nucleation and bulk crystallization in binary phase field theory[J]. Phys. Rev. Lett., 2002, 88: 206105 | [50] | Warren J A, Pusztai T, K?rnyei L, et al.Phase field approach to heterogeneous crystal nucleation in alloys[J]. Phys. Rev., 2009, 79B: 014204 | [51] | Hu S Y, Chen L Q.Solute segregation and coherent nucleation and growth near a dislocation—A phase-field model integrating defect and phase microstructures[J]. Acta Mater., 2001, 49: 463 | [52] | Zhang W, Jin Y M, Khachaturyan A G.Phase field microelasticity modeling of heterogeneous nucleation and growth in martensitic alloys[J]. Acta Mater., 2007, 55: 565 | [53] | Shen C, Simmons J P, Wang Y.Effect of elastic interaction on nucleation: II. Implementation of strain energy of nucleus formation in the phase field method[J]. Acta Mater., 2007, 55: 1457 | [54] | Rokkam S, El-Azab A, Millett P, et al.Phase field modeling of void nucleation and growth in irradiated metals[J]. Model. Simul. Mater. Sci. Eng., 2009, 17: 064002 | [55] | Stauffer D, Coniglio A, Heermann D W.Monte Carlo experiment for nucleation rate in the three-dimensional Ising model[J]. Phys. Rev. Lett., 1982, 49: 1299 | [56] | Hale B N, DiMattio D J. Scaling of the nucleation rate and a Monte Carlo discrete sum approach to water cluster free energies of formation[J]. J. Phys. Chem., 2004, 108B: 19780 | [57] | Yi D O, Jhon M H, Sharp I D, et al.Modeling nucleation and growth of encapsulated nanocrystals: Kinetic Monte Carlo simulations and rate theory[J]. Phys. Rev., 2008, 78B: 245415 | [58] | Filipponi A, Giammatteo P.Kinetic Monte Carlo simulation of the classical nucleation process[J]. J. Chem. Phys., 2016, 145: 211913 | [59] | Wang H, Gould H, Klein W.Homogeneous and heterogeneous nucleation of Lennard-Jones liquids[J]. Phys. Rev., 2007, 76E: 031604 | [60] | Page A J, Sear R P.Heterogeneous nucleation in and out of pores[J]. Phys. Rev. Lett., 2006, 97: 065701 | [61] | Alder B J, Wainwright T E.Phase transition for a hard sphere system[J]. J. Chem. Phys., 1957, 27: 1208 | [62] | Mandell M J, McTague J P, Rahman A. Crystal nucleation in a three-dimensional Lennard-Jones system: A molecular dynamics study[J]. J. Chem. Phys., 1976, 64: 3699 | [63] | Leines D G, Drautz R, Rogal J.Atomistic insight into the non-classical nucleation mechanism during solidification in Ni[J]. J. Chem. Phys., 2017, 146: 154702 | [64] | Pang H, Jin Z H, Lu K.Relaxation, nucleation, and glass transition in supercooled liquid Cu[J]. Phys. Rev., 2003, 67B: 094113 | [65] | Liu J, Zhao J Z, Hu Z Q.Kinetic details of the nucleation in supercooled liquid metals[J]. Appl. Phys. Lett., 2006, 89: 031903 | [66] | Jungblut S, Dellago C.Heterogeneous crystallization on tiny clusters[J]. Europhys. Lett., 2011, 96: 56006 | [67] | Wang J S, Horsfield A, Lee P D, et al.Heterogeneous nucleation of solid Al from the melt by Al3Ti: Molecular dynamics simulations[J]. Phys. Rev., 2010, 82B: 144203 | [68] | Palafox-Hernandez J P, Laird B B. Orientation dependence of heterogeneous nucleation at the Cu-Pb solid-liquid interface[J]. J. Chem. Phys., 2016, 145: 211914 | [69] | Men H, Fan Z.Atomic ordering in liquid aluminium induced by substrates with misfits[J]. Comput. Mater. Sci., 2014, 85: 1 | [70] | Li R, Wu Y Q, Xiao J J.The nucleation process and the roles of structure and density fluctuations in supercooled liquid Fe[J]. J. Chem. Phys., 2014, 140: 034503 | [71] | An S M, Li J H, Li Y, et al.Two-step crystal growth mechanism during crystallization of an undercooled Ni50Al50 alloy[J]. Sci. Rep., 2016, 6: 31062 | [72] | Shibuta Y, Sakane S, Takaki T, et al.Submicrometer-scale molecular dynamics simulation of nucleation and solidification from undercooled melt: Linkage between empirical interpretation and atomistic nature[J]. Acta Mater., 2016, 105: 328 | [73] | Elder K R, Katakowski M, Haataja M, et al.Modeling elasticity in crystal growth[J]. Phys. Rev. Lett., 2002, 88: 245701 | [74] | Backofen R, R?tz A, Voigt A.Nucleation and growth by a phase field crystal (PFC) model[J]. Phil. Mag. Lett., 2007, 87: 813 | [75] | Prieler R, Hubert J, Li D, et al.An anisotropic phase-field crystal model for heterogeneous nucleation of ellipsoidal colloids[J]. J. Phys-Condens. Matt., 2009, 21: 464110 | [76] | Tóth G I, Tegze G, Pusztai T, et al.Heterogeneous crystal nucleation: The effect of lattice mismatch[J]. Phys. Rev. Lett., 2012, 108: 025502 | [77] | Pusztai T, Tegze G, Tóth G I, et al.Phase-field approach to polycrystalline solidification including heterogeneous and homogeneous nucleation[J]. J. Phys-Condens. Matt., 2008, 20: 404205 | [78] | Tóth G I, Tegze G, Pusztai T, et al.Polymorphism, crystal nucleation and growth in the phase-field crystal model in 2d and 3d[J]. J. Phys. Condens. Matter, 2010, 22: 364101 | [79] | Podmaniczky F, Tóth G I, Tegze G, et al.Recent developments in modeling heteroepitaxy/heterogeneous bucleation by dynamical density functional theory[J]. Metall. Mater. Trans., 2015, 46A: 4908 | [80] | Guo Y L, Wang J C, Wang Z J, et al.Phase field crystal model for the effect of colored noise on homogenerous nucleation[J]. Acta Phys. Sin., 2012, 61: 146401(郭耀麟, 王锦程, 王志军等. 噪声对均质形核过程影响的晶体相场法研究[J]. 物理学报, 2012, 61: 146401) | [81] | Guo C, Wang J C, Li J J, et al.Kinetic pathways and mechanisms of two-step nucleation in crystallization[J]. J. Phys. Chem. Lett., 2016, 7: 5008 | [82] | Guo C, Wang J C, Li J J, et al.Uncoupling growth mechanisms of binary eutectics during rapid solidification[J]. J. Phys. Chem., 2017, 121C: 8204 | [83] | Guo C, Wang J C, Wang Z J, et al.Interfacial free energy adjustable phase field crystal model for homogeneous nucleation[J]. Soft Matter, 2016, 12: 4666 | [84] | Guo C, Wang J C, Wang Z J.Atomistic investigation of homogeneous nucleation in undercooled liquid[J]. Philos. Mag., 2017, 97: 2255 | [85] | Tang S, Wang J C, Svendsen B, et al.Competitive bcc and fcc crystal nucleation from non-equilibrium liquids studied by phase-field crystal simulation[J]. Acta Mater., 2017, 139: 196 | [86] | Guo C, Wang J C, Li J J, et al.Coupling eutectic nucleation mechanism investigated by phase field crystal model[J]. Acta Mater., 2018, 145: 195 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|