Please wait a minute...
金属学报  2018, Vol. 54 Issue (10): 1399-1407    DOI: 10.11900/0412.1961.2018.00033
  本期目录 | 过刊浏览 |
井下含硫环空液中P110油管钢应力腐蚀开裂的电化学噪声特征
余军1, 张德平2,3, 潘若生2,3, 董泽华1()
1 华中科技大学化学与化工学院 武汉 430074
2 中国石油吉林油田公司 松原 138000
3 国家能源CO2驱油与埋存技术研发(实验)中心 松原 138000
Electrochemical Noise of Stress Corrosion Cracking of P110 Tubing Steel in Sulphur-Containing Downhole Annular Fluid
Jun YU1, Deping ZHANG2,3, Ruosheng PAN2,3, Zehua DONG1()
1 School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology,Wuhan 430074, China
2 Jilin Oilfield Company of PetroChina, Songyuan 138000, China
3 R&D Center of National Energy of CO2 Flooding and Embedded Technology, Songyuan 138000, China;
引用本文:

余军, 张德平, 潘若生, 董泽华. 井下含硫环空液中P110油管钢应力腐蚀开裂的电化学噪声特征[J]. 金属学报, 2018, 54(10): 1399-1407.
Jun YU, Deping ZHANG, Ruosheng PAN, Zehua DONG. Electrochemical Noise of Stress Corrosion Cracking of P110 Tubing Steel in Sulphur-Containing Downhole Annular Fluid[J]. Acta Metall Sin, 2018, 54(10): 1399-1407.

全文: PDF(5217 KB)   HTML
摘要: 

采用慢应变速率拉伸(SSRT)实验,并结合电化学噪声(ECN)、SEM与EIS等方法,研究了P110低合金油管钢在模拟井下环空液中的应力腐蚀开裂(SCC)行为,并探讨了S2-浓度对裂纹萌生和扩展过程的影响。结果表明,在P110钢的弹性形变阶段,环空液中低浓度S2-的加入加速了P110钢拉伸试样表面钝化膜的破坏,导致ECN曲线上出现许多由亚稳态点蚀引起的短时电流噪声峰。S2-的加入还显著缩短了亚稳态点蚀向稳定点蚀转变的时间,促使拉伸试样表面出现较大尺寸的蚀坑,这些蚀坑在拉应力作用下可以转变为裂纹萌生源。相比亚稳态点蚀,裂纹生长产生的噪声峰平均寿命更长(约400 s),且噪声幅值(约40 μA)和积分电量(约4000 μC)也更大。P110钢的SCC以阳极溶解为主,且裂纹生长速率随S2-浓度的增加而增大,但裂纹生长是断续而非连续进行的。

关键词 低合金钢应力腐蚀开裂电化学噪声环空液    
Abstract

Stress corrosion cracking (SCC) is considered as the main risk of tubing steels during the exploitation of oil and gas fields, which could result in sudden and catastrophic failures of downhole tubing. Especially in annular downhole environment, P110 tubing steel is prone to sulfide stress corrosion cracking and hydrogen embrittlement (HE) where S2- could be originated from bio-reduction of SO42- inspired by sulfate-reducing bacteria (SRB). Currently, extensive work have been performed to investigate the influence factors on SCC and mechanism of tubing steels, but limited researches have been conducted on the SCC of P110 tubing steel in annular downhole environment, particularly, on the early detection of SCC. In this work, the SCC behavior of P110 low alloy steel in simulating sulphur-containing annular fluid (SAF) and the effect of S2- concentration on the initiation and propagation of crack were investigated by slow stress rate test (SSRT), non-destructive electrochemical noise (ECN), SEM and EIS techniques. The results showed that, during the elastic stress stage, the addition of S2- accelerated the breakdown of passivation film on the surface of P110 steel tensile specimen. There are many short duration current transients caused by metastable pits on ECN curves. The transformation time of metastable to stable pits is shortened significantly by the addition of S2-, which not only promotes the growth of pits but the initiation of cracks from the stable pits under the action of tensile stress. Compared with the ECN spikes from metastable pits, the spikes associated to the advance of cracks are featured by longer average duration (about 400 s), stronger amplitude (40 μA), and higher charge (about 4000 μC). As a result, the susceptibility of P110 steel to SCC increases with S2- concentration, and the propagation of SCC is dominated by anodic dissolution characteristic of discontinuous advance.

Key wordslow alloy steel    stress corrosion cracking    electrochemical noise    annular fluid
收稿日期: 2018-01-20     
ZTFLH:  TG171  
基金资助:国家自然科学基金项目No.51771079和国家油气重大专项项目No.2016ZX05016002-004
作者简介:

作者简介 余 军,男,1993年生,硕士生

图1  慢拉伸试样尺寸
图2  电解池装置示意图
图3  P110钢在空气和含不同浓度S2-的模拟环空液中的应力-应变曲线及S2-浓度对断面收缩率和伸长率损失因子的影响
图4  P110钢试样在含不同浓度S2-的SAF溶液中进行SSRT实验时的电化学噪声曲线
图5  P110低合金钢在含不同浓度S2-的模拟环空液中裂纹形成时的特征噪声谱细节图
图6  P110钢在含不同浓度S2-模拟环空液中的噪声峰的积分电量(qc)、峰幅值(Ac)和峰寿命(Lc)
图7  含有不同浓度S2-的SAF溶液中P110钢的极化曲线
图8  含有不同浓度S2-的SAF溶液中P110钢的EIS
图9  不同条件下P110钢拉伸试样的断口形貌SEM像
图10  不同条件下P110钢拉伸试样靠近断口的侧面形貌SEM像
图11  不同条件下P110钢拉伸试样的横截面形貌SEM像
[1] Liu Z Y, Zhao T L, Liu R K, et al.Influence factors on stress corrosion cracking of P110 tubing steel under CO2 injection well annulus environment[J]. J. Cent. South Univ., 2016, 23: 757
[2] Wang P Y, Lv Z G, Zheng S Q, et al.Tensile and impact properties of X70 pipeline steel exposed to wet H2S environments[J]. Int. J. Hydrogen Energy, 2015, 40: 11514
[3] Roffey P, Davies E H.The generation of corrosion under insulation and stress corrosion cracking due to sulphide stress cracking in an austenitic stainless steel hydrocarbon gas pipeline[J]. Eng. Fail. Anal., 2014, 44: 148
[4] Bao M Y, Ren C Q, Lei M Y, et al.Electrochemical behavior of tensile stressed P110 steel in CO2 environment[J]. Corros. Sci., 2016, 112: 585
[5] Meriem-Benziane M, Bou-Sa?d B, Boudouani N.The effect of crude oil in the pipeline corrosion by the naphthenic acid and the sulfur: A numerical approach[J]. J. Pet. Sci. Eng., 2017, 158: 672
[6] Liu Z Y, Li H, Jia Z J, et al.Failure analysis of P110 steel tubing in low-temperature annular environment of CO2 flooding wells[J]. Eng. Fail. Anal., 2016, 60: 296
[7] Alexandrov V, Sushko M L, Schreiber D K, et al.Adsorption and diffusion of atomic oxygen and sulfur at pristine and doped Ni surfaces with implications for stress corrosion cracking[J]. Corros. Sci., 2016, 113: 26
[8] Zhang L, Li X G, Du C W, et al.Corrosion and stress corrosion cracking behavior of X70 pipeline steel in a CO2-containing solution[J]. J. Mater. Eng. Perform., 2009, 18: 319
[9] Monnot M, Nogueira R P, Roche V, et al.Sulfide stress corrosion study of a super martensitic stainless steel in H2S sour environments: Metallic sulfides formation and hydrogen embrittlement[J]. Appl. Surf. Sci., 2017, 394: 132
[10] Qin M, Li J F, Chen S Y, et al.Experimental study on stress corrosion crack propagation rate of FV520B in carbon dioxide and hydrogen sulfide solution[J]. Results Phys., 2016, 6: 365
[11] Ziaei S M R, Kokabi A H, Nasr-Esfehani M. Sulfide stress corrosion cracking and hydrogen induced cracking of A216-WCC wellhead flow control valve body[J]. Case Stud. Eng. Fail. Anal., 2013, 1: 223
[12] Ding J H, Zhang L, Li D P, et al.Corrosion and stress corrosion cracking behavior of 316L austenitic stainless steel in high H2S-CO2-Cl- environment[J]. J. Mater. Sci., 2013, 48: 3708
[13] Yin Z F, Zhao W Z, Bai Z Q, et al.Corrosion behavior of SM 80SS tube steel in stimulant solution containing H2S and CO2[J]. Electrochim. Acta, 2008, 53: 3690
[14] Choi Y S, Nesic S, Ling S.Effect of H2S on the CO2 corrosion of carbon steel in acidic solutions[J]. Electrochim. Acta, 2011, 56: 1752
[15] Wang P Y, Wang J, Zheng S Q, et al.Effect of H2S/CO2 partial pressure ratio on the tensile properties of X80 pipeline steel[J]. Int. J. Hydrogen Energy, 2015, 40: 11925
[16] Wei L, Pang X L, Gao K W.Effect of small amount of H2S on the corrosion behavior of carbon steel in the dynamic supercritical CO2 environments[J]. Corros. Sci., 2016, 103: 132
[17] Liu Z Y, Wang X Z, Liu R K, et al.Electrochemical and sulfide stress corrosion cracking behaviors of tubing steels in a H2S/CO2 annular environment[J]. J. Mater. Eng. Perform., 2014, 23: 1279
[18] Fan Z, Hu X G, Liu J Y, et al.Stress corrosion cracking of L360NS pipeline steel in sulfur environment[J]. Petroleum, 2017, 3: 377
[19] Hao W K, Liu Z Y, Zhang X, et al.Effects of H2S with various concentration on stress corrosion cracking behavior of 35CrMo steel[J]. J. Chin. Soc. Corros. Prot., 2013, 33: 357(郝文魁, 刘智勇, 张新等. H2S浓度对35CrMo钢应力腐蚀开裂的影响[J]. 中国腐蚀与防护学报, 2013, 33: 357)
[20] Zhou C S, Huang Q Y, Guo Q, et al.Sulphide stress cracking behaviour of the dissimilar metal welded joint of X60 pipeline steel and Inconel 625 alloy[J]. Corros. Sci., 2016, 110: 242
[21] Kong D J, Wu Y Z, Long D.Stress corrosion of X80 pipeline steel welded joints by slow strain test in NACE H2S solutions[J]. J. Iron Steel Res. Int., 2013, 20: 40
[22] Zhu L K, Yan Y, Qiao L J, et al.Stainless steel pitting and early-stage stress corrosion cracking under ultra-low elastic load[J]. Corros. Sci., 2013, 77: 360
[23] Breimesser M, Ritter S, Seifert H P, et al.Application of electrochemical noise to monitor stress corrosion cracking of stainless steel in tetrathionate solution under constant load[J]. Corros. Sci., 2012, 63: 129
[24] Acu?a-González N, García-Ochoa E, González-Sánchez J.Assessment of the dynamics of corrosion fatigue crack initiation applying recurrence plots to the analysis of electrochemical noise data[J]. Int. J. Fatigue, 2008, 30: 1211
[25] Dong Z H, Shi W, Guo X P.Initiation and repassivation of pitting corrosion of carbon steel in carbonated concrete pore solution[J]. Corros. Sci., 2011, 53: 1322
[26] Dong Z H, Guo X P, Zheng J X, et al.Investigation on inhibition of CrO42- and MoO42- ions on carbon steel pitting corrosion by electrochemical noise analysis[J]. J. Appl. Electrochem., 2002, 32: 395
[27] Dong Z H, Guo X P, Zheng J X.Review on electrochemical noise analysis methods[J]. Mater. Prot., 2001, 34(7): 20(董泽华, 郭兴蓬, 郑家燊. 电化学噪声的分析方法[J]. 材料保护, 2001, 34(7): 20)
[28] Javidi M, Horeh S B.Investigating the mechanism of stress corrosion cracking in near-neutral and high pH environments for API 5L X52 steel[J]. Corros. Sci., 2014, 80: 213
[29] Wells D B, Stewart J, Davidson R, et al.The mechanism of intergranular stress corrosion cracking of sensitised austenitic stainless steel in dilute thiosulphate solution[J]. Corros. Sci., 1992, 33: 39
[1] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[2] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[3] 马荣耀,王长罡,穆鑫,魏欣,赵林,董俊华,柯伟. 静水压力对超纯Fe腐蚀行为的影响[J]. 金属学报, 2019, 55(7): 859-874.
[4] 马宏驰, 杜翠薇, 刘智勇, 李永, 李晓刚. E690高强低合金钢焊接热影响区典型组织在含SO2海洋环境中的应力腐蚀行为对比研究[J]. 金属学报, 2019, 55(4): 469-479.
[5] 邓平,孙晨,彭群家,韩恩厚,柯伟,焦治杰. 核用304不锈钢辐照促进应力腐蚀开裂研究[J]. 金属学报, 2019, 55(3): 349-361.
[6] 邹佳男, 庞晓露, 高克玮. 低合金钢X70和3Cr在超临界CO2环境中的缝隙腐蚀[J]. 金属学报, 2018, 54(4): 537-546.
[7] 苑洪钟,刘智勇,李晓刚,杜翠薇. 外加电位对X90钢及其焊缝在近中性土壤模拟溶液中应力腐蚀行为的影响[J]. 金属学报, 2017, 53(7): 797-807.
[8] 闫茂成,杨霜,许进,孙成,吴堂清,于长坤,柯伟. 酸性土壤中破损防腐层下X80管线钢的应力腐蚀行为*[J]. 金属学报, 2016, 52(9): 1133-1141.
[9] 刘智勇,李宗书,湛小琳,皇甫文珠,杜翠薇,李晓刚. X80钢在鹰潭土壤模拟溶液中应力腐蚀裂纹扩展行为机理*[J]. 金属学报, 2016, 52(8): 965-972.
[10] 张子龙, 夏爽, 曹伟, 李慧, 周邦新, 白琴. 晶界特征对316不锈钢沿晶应力腐蚀开裂裂纹萌生的影响*[J]. 金属学报, 2016, 52(3): 313-319.
[11] 马宏驰, 杜翠薇, 刘智勇, 郝文魁, 李晓刚, 刘超. E690高强钢在SO2污染海洋大气环境中的应力腐蚀行为研究*[J]. 金属学报, 2016, 52(3): 331-340.
[12] 孙敏,李晓刚,李劲. 新型超高强度钢Cr12Ni4Mo2Co14在酸性环境中的应力腐蚀行为*[J]. 金属学报, 2016, 52(11): 1372-1378.
[13] 刘峰, 王慷. 低合金钢TMCP中相变热力学/动力学相关性探讨*[J]. 金属学报, 2016, 52(10): 1326-1332.
[14] 康举,李吉超,冯志操,邹贵生,王国庆,吴爱萍. 2219-T8铝合金搅拌摩擦焊接头力学和应力腐蚀性能薄弱区研究*[J]. 金属学报, 2016, 52(1): 60-70.
[15] 卢云飞,董俊华,柯伟. SO42-对NiCu低合金钢在除氧NaHCO3溶液中腐蚀行为的影响[J]. 金属学报, 2015, 51(9): 1067-1076.