Please wait a minute...
金属学报  2017, Vol. 53 Issue (4): 440-446    DOI: 10.11900/0412.1961.2016.00491
  本期目录 | 过刊浏览 |
半固态烧结法制备高强韧新型双尺度结构钛合金
康利梅1,杨超1,2(),李元元1,2
1 华南理工大学国家金属材料近净成形工程技术研究中心 广州 510640
2 吉林大学材料科学与工程学院 长春 130022
Fabrication of Novel Bimodal Titanium Alloy with High-Strength and Large-Ductility by Semi-Solid Sintering
Limei KANG1,Chao YANG1,2(),Yuanyuan LI1,2
1 National Engineering Research Center of Near-Net-Shape Forming for Metallic Materials, South China University of Technology, Guangzhou 510640, China
2 College of Materials Science and Engineering, Jilin University, Changchun 130022, China
引用本文:

康利梅,杨超,李元元. 半固态烧结法制备高强韧新型双尺度结构钛合金[J]. 金属学报, 2017, 53(4): 440-446.
Limei KANG, Chao YANG, Yuanyuan LI. Fabrication of Novel Bimodal Titanium Alloy with High-Strength and Large-Ductility by Semi-Solid Sintering[J]. Acta Metall Sin, 2017, 53(4): 440-446.

全文: PDF(5247 KB)   HTML
摘要: 

提出了一种基于共晶转变形成液相的半固态烧结新技术,通过调控共晶转变的相组成(或共晶液相的含量),利用半固态烧结共晶复相系非晶粉末成功制备出高强韧新型双尺度结构Ti52.1Fe21.7Co8.2Nb12.2Al5.8合金。其双尺度结构为超细晶bcc β-Ti和超细晶bcc Ti(Fe, Co)构成的层片共晶基体包围细晶等轴状fcc Ti2(Co, Fe)第二相,与目前文献报道的双尺度结构明显不同。该双尺度结构合金具有超高的屈服强度(2050 MPa)和较大的塑性应变(19.7%),综合性能优于目前文献报道的双尺度结构钛合金。

关键词 钛合金双尺度结构半固态烧结放电等离子烧结共晶转变    
Abstract

According to Hall-Petch relationship, high strength of nano-grain and ultrafine-grain meta-llic materials are always accompanied by the cost of ductility because of the lack of work hardening induced by rare or absent dislocation or slip band. And various strategies including semi-solid processing accompanied by rapid solidification, recrystallization induced by plastic deformation and heat treatment, consolidation of blended powders with different grain sizes, and so on, have been developed to fabricate so-called bimodal/multimodal microstructures in the pursuit of high strength and no sacrificing ductility. As one of the most significant types of phase transformation in metallography, eutectic reaction was frequently utilized to tailor phase constitution and its microstructure due to high strength resulted from resultant lamellar eutectic structure. Generally, eutectic structure is more common in solidification and even traditional semi-solid processing for low melting point alloys (such as aluminum and magnesium alloys). In this work, a fundamentally novel approach of semi-solid sintering stemmed from the formation of liquid phase induced by eutectic transformation is introduced. Through regulation of the phase composition of eutectic transformation (or eutectic liquid content), novel bimodal Ti52.1Fe21.7Co8.2Nb12.2Al5.8 alloy with high-strength and large-ductility was successfully fabricated by semi-solid sintering of amorphous alloy powder with multi-phase eutectic system. The fabricated bimodal microstructure consists of fine nearly equiaxed fcc Ti2(Co, Fe) embedded into ultrafine lamellar eutectic matrix containing bcc β-Ti and bcc Ti(Fe, Co) lamellae, which is different from bimodal microstructures reported so far. The fabricated bimodal alloy exhibits ultra-high yield strength of 2050 MPa and large plastic strain of 19.7%, superior to those of bimodal titanium alloys reported so far. The method is conducive to process high-performance new structural metallic alloys in high melting point alloy systems.

Key wordstitanium alloy    bimodal microstructure    semi-solid sintering    spark plasma sintering    eutectic transformation
收稿日期: 2016-11-07     
基金资助:国家自然科学基金项目Nos.51574128和51627805及广东省自然科学基金研究团队项目No.2015A030312003
图1  球磨终态Ti52.1Fe21.7Co8.2Nb12.2Al5.8合金粉末的HRTEM像及其FFT谱
图2  球磨终态Ti52.1Fe21.7Co8.2Nb12.2Al5.8合金粉末的DSC曲线及原位XRD谱
图3  固态烧结、半固态烧结和吸铸3种方法制备的Ti52.1Fe21.7Co8.2Nb12.2Al5.8块体合金的XRD谱
图4  固态烧结、半固态烧结和吸铸3种方法制备的Ti52.1Fe21.7Co8.2Nb12.2Al5.8块体合金的SEM像
图5  固态烧结、半固态烧结和吸铸3种方法制备的Ti52.1Fe21.7Co8.2Nb12.2Al5.8块体合金的TEM像及SAED谱
图6  固态烧结、半固态烧结和吸铸3种方法制备的Ti52.1Fe21.7Co8.2Nb12.2Al5.8块体合金的压缩工程应力-应变曲线
图7  半固态烧结双尺度结构试样的屈服强度和塑性应变与文献报道研究结果的比较
Processing method σy / MPa εe / % σu / MPa εf / %
Solid sintering 2175 4.2 2341 5.1
Semi-solid sintering 2050 3.3 2897 23.0
Suction casting 1750 3.8 2300 10.0
表1  不同加工方法制备的Ti52.1Fe21.7Co8.2Nb12.2Al5.8块体合金的压缩力学性能
[1] He G, Eckert J, L?ser W, et al.Novel Ti-base nanostructure-dendrite composite with enhanced plasticity[J]. Nat. Mater., 2003, 2: 33
[2] He G, Eckert J, L?ser W, et al.Composition dependence of the microstructure and the mechanical properties of nano/ultrafine-structured Ti-Cu-Ni-Sn-Nb alloys[J]. Acta Mater., 2004, 52: 3035
[3] Han J H, Kim K B, Yi S, et al.Formation of a bimodal eutectic structure in Ti-Fe-Sn alloys with enhanced plasticity[J]. Appl. Phys. Lett., 2008, 93: 141901
[4] Das J, Ettingshausen F, Eckert J.Ti-base nanoeutectic-hexagonal structured (D019) dendrite composite[J]. Scr. Mater., 2008, 58: 631
[5] Okulov I V, Kühn U, Marr T, et al.Deformation and fracture behavior of composite structured Ti-Nb-Al-Co(-Ni) alloys[J]. Appl. Phys. Lett., 2014, 104: 071905
[6] Ku?hn U, Mattern N, Gebert A, et al. Nanostructured Zr- and Ti-based composite materials with high strength and enhanced plasticity[J]. J. Appl. Phys., 2005, 98: 054307
[7] Zhang L C, Lu H B, Mickel C, et al.Ductile ultrafine-grained Ti-based alloys with high yield strength[J]. Appl. Phys. Lett., 2007, 91: 051906
[8] Louzguine-Luzgin D V, Louzguina-Luzgina L V, Kato H, et al. Investigation of Ti-Fe-Co bulk alloys with high strength and enhanced ductility[J]. Acta Mater., 2005, 53: 2009
[9] Zhang L C, Das J, Lu H B, et al.High strength Ti-Fe-Sn ultrafine composites with large plasticity[J]. Scr. Mater., 2007, 57: 101
[10] Wu X L, Yang M X, Yuan F P, et al.Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility[J]. Proc. Natl. Acad. Sci. USA, 2015, 112: 14501
[11] Yin W H, Xu F, Ertorer O, et al.Mechanical behavior of microstructure engineered multi-length-scale titanium over a wide range of strain rates[J]. Acta Mater., 2013, 61: 3781
[12] Long Y, Wang T, Zhang H Y, et al.Enhanced ductility in a bimodal ultrafine-grained Ti-6Al-4V alloy fabricated by high energy ball milling and spark plasma sintering[J]. Mater. Sci. Eng., 2014, A608: 82
[13] Srinivasarao B, Oh-ishi K, Ohkubo T, et al. Bimodally grained high-strength Fe fabricated by mechanical alloying and spark plasma sintering[J]. Acta Mater., 2009, 57: 3277
[14] Liu Y Z, Li Z L, Gu C X.Deformation behavior and microstructure evolution of 7050 aluminum alloy during semi-solid state compression process[J]. Acta Metall. Sin., 2013, 49: 1597
[14] (刘允中, 李志龙, 顾才鑫. 7050铝合金半固态压缩变形行为及组织演变[J]. 金属学报, 2013, 49: 1597)
[15] Fan Z.Semisolid metal processing[J]. Int. Mater. Rev., 2002, 47: 49
[16] Ku?hn U, Mattern N, Gebert A, et al. Nanostructured Zr- and Ti-based composite materials with high strength and enhanced plasticity[J]. J. Appl. Phys., 2005, 98: 054307
[17] Liu L H, Yang C, Kang L M, et al.A new insight into high-strength Ti62Nb12.2Fe13.6Co6.4Al5.8 alloys with bimodal microstructure fabricated by semi-solid sintering[J]. Sci. Rep., 2016, 6: 23467
[18] Ge Z M.Titanium Binary Phase Diagram [M]. Beijing: National Defence Industry Press, 1977: 12
[18] (葛志明. 钛的二元系相图 [M]. 北京: 国防工业出版社, 1977: 12)
[19] Inoue A, Takeuchi A.Recent development and application products of bulk glassy alloys[J]. Acta Mater., 2011, 59: 2243
[20] Lee S W, Kim J T, Hong S H, et al.Micro-to-nano-scale deformation mechanisms of a bimodal ultrafine eutectic composite[J]. Sci. Rep., 2014, 4: 6500
[21] Liu L H, Yang C, Yao Y G, et al.Densification mechanism of Ti-based metallic glass powders during spark plasma sintering process[J]. Intermetallics, 2015, 66: 1
[22] Yang C, Liu L H, Cheng Q R, et al.Equiaxed grained structure: A structure in titanium alloys with higher compressive mechanical properties[J]. Mater. Sci. Eng., 2013, A580: 397
[23] Liu L H, Yang C, Kang L M, et al.Equiaxed Ti-based composites with high strength and large plasticity prepared by sintering and crystallizing amorphous powder[J]. Mater. Sci. Eng., 2016, A650: 171
[24] Liu L H, Yang C, Wang F, et al.Ultrafine grained Ti-based composites with ultrahigh strength and ductility achieved by equiaxing microstructure[J]. Mater. Des., 2015, 79: 1
[25] Li Y H, Yang C, Kang L M, et al.Non-isothermal and isothermal crystallization kinetics and their effect on microstructure of sintered and crystallized TiNbZrTaSi bulk alloys[J]. J. Non-Cryst. Solids, 2016, 432: 440
[26] Yang C, Liu L H, Yao Y G, et al.Intrinsic relationship between crystallization mechanism of metallic glass powder and microstructure of bulk alloys fabricated by powder consolidation and crystallization of amorphous phase[J]. J. Alloys Compd., 2014, 586: 542
[27] Zou L M, Li Y H, Yang C, et al.Effect of Fe content on glass-forming ability and crystallization behavior of a (Ti69.7Nb23.7Zr4.9Ta1.7)100-xFex alloy synthesized by mechanical alloying[J]. J. Alloys Compd., 2013, 553: 40
[28] Li Y H, Yang C, Wang F, et al.Biomedical TiNbZrTaSi alloys designed by d-electron alloy design theory[J]. Mater. Des., 2015, 85: 7
[29] Li Y Y, Zou L M, Yang C, et al.Ultrafine-grained Ti-based composites with high strength and low modulus fabricated by spark plasma sintering[J]. Mater. Sci. Eng., 2013, A560: 857
[30] Li Y Y, Yang C, Li X Q, et al.Fabrication of Ti-based composites based on bulk amorphous alloys by spark plasma sintering and crystallization of amorphous phase[J]. Chin. J. Nonferrous Met., 2011, 21: 2305
[30] (李元元, 杨超, 李小强等. 放电等离子烧结-非晶晶化法合成钛基块状非晶复合材料[J]. 中国有色金属学报, 2011, 21: 2305)
[31] Kim K B, Das J, Xu W, et al.Microscopic deformation mechanism of a Ti66.1Nb13.9Ni4.8Cu8Sn7.2 nanostructure-dendrite composite[J]. Acta Mater., 2006, 54: 3701
[32] Li J F, Zhou Y H.Eutectic growth in bulk undercooled melts[J]. Acta Mater., 2005, 53: 2351
[33] Parisi A, Plapp M.Stability of lamellar eutectic growth[J]. Acta Mater., 2008, 56: 1348
[34] Woodcock T G, Kusy M, Mato S, et al.Formation of a metastable eutectic during the solidification of the alloy Ti60Cu14Ni12Sn4Ta10[J]. Acta Mater., 2005, 53: 5141
[35] Lee S W, Kim J T, Hong S H, et al.Micro-to-nano-scale deformation mechanisms of a bimodal ultrafine eutectic composite[J]. Sci. Rep., 2014, 4: 6500
[36] Greenwood M, Hoyt J J, Provatas N.Competition between surface energy and elastic anisotropies in the growth of coherent solid-state dendrites[J]. Acta Mater., 2009, 57: 2613
[37] Das J, Kim K B, Baier F, et al.High-strength Ti-base ultrafine eutectic with enhanced ductility[J]. Appl. Phys. Lett., 2005, 87: 161907
[38] Misra D K, Rakshit R K, Singh M, et al.High yield strength bulk Ti based bimodal ultrafine eutectic composites with enhanced plasticity[J]. Mater. Des., 2014, 58: 551
[1] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[2] 张滨, 田达, 宋竹满, 张广平. 深潜器耐压壳用钛合金保载疲劳服役可靠性研究进展[J]. 金属学报, 2023, 59(6): 713-726.
[3] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[4] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[5] 王海峰, 张志明, 牛云松, 杨延格, 董志宏, 朱圣龙, 于良民, 王福会. 前置渗氧对TC4钛合金低温等离子复合渗层微观结构和耐磨损性能的影响[J]. 金属学报, 2023, 59(10): 1355-1364.
[6] 崔振铎, 朱家民, 姜辉, 吴水林, 朱胜利. Ti及钛合金表面改性在生物医用领域的研究进展[J]. 金属学报, 2022, 58(7): 837-856.
[7] 李细锋, 李天乐, 安大勇, 吴会平, 陈劼实, 陈军. 钛合金及其扩散焊疲劳特性研究进展[J]. 金属学报, 2022, 58(4): 473-485.
[8] 颜孟奇, 陈立全, 杨平, 黄利军, 佟健博, 李焕峰, 郭鹏达. 热变形参数对TC18钛合金β相组织及织构演变规律的影响[J]. 金属学报, 2021, 57(7): 880-890.
[9] 张婷, 李仲杰, 许浩, 董安平, 杜大帆, 邢辉, 汪东红, 孙宝德. 激光沉积法制备Ti/TNTZO层状材料及其组织性能[J]. 金属学报, 2021, 57(6): 757-766.
[10] 戴进财, 闵小华, 周克松, 姚凯, 王伟强. 预变形与等温时效耦合作用下Ti-10Mo-1Fe/3Fe层状合金的力学性能[J]. 金属学报, 2021, 57(6): 767-779.
[11] 刘泽, 宁汉维, 林彰乾, 王东君. SPS烧结参数对NiAl-28Cr-5.5Mo-0.5Zr合金微观组织及室温力学性能的影响[J]. 金属学报, 2021, 57(12): 1579-1587.
[12] 李金山, 唐斌, 樊江昆, 王川云, 花珂, 张梦琪, 戴锦华, 寇宏超. 高强亚稳β钛合金变形机制及其组织调控方法[J]. 金属学报, 2021, 57(11): 1438-1454.
[13] 杨锐, 马英杰, 雷家峰, 胡青苗, 黄森森. 高强韧钛合金组成相成分和形态的精细调控[J]. 金属学报, 2021, 57(11): 1455-1470.
[14] 林彰乾, 郑伟, 李浩, 王东君. 放电等离子烧结TA15钛合金及石墨烯增强TA15复合材料微观组织与力学性能[J]. 金属学报, 2021, 57(1): 111-120.
[15] 张海军, 邱实, 孙志梅, 胡青苗, 杨锐. 无序β-Ti1-xNbx合金自由能及弹性性质的第一性原理计算:特殊准无序结构和相干势近似的比较[J]. 金属学报, 2020, 56(9): 1304-1312.