Please wait a minute...
金属学报  2016, Vol. 52 Issue (6): 741-746    DOI: 10.11900/0412.1961.2015.00454
  论文 本期目录 | 过刊浏览 |
钛合金切削用Ti1-xAlxN涂层的制备及其切削性能研究*
隋旭东1(),李国建1,王强1,秦学思1,周向葵1,王凯1,左立建2
1 东北大学材料电磁过程研究教育部重点实验室, 沈阳 110819
2 中国石油大庆石化分公司炼油厂, 大庆 163714
PREPARATION OF Ti1-xAlxN COATING IN CUTTING TITANIUM ALLOY AND ITS CUTTING PERFORMANCE
Xudong SUI1(),Guojian LI1,Qiang WANG1,Xuesi QIN1,Xiangkui ZHOU1,Kai WANG1,Lijian ZUO2
1 Key Laboratory of Electromagnetic Processing of Materials, Northeastern University, Shenyang 110819, China
2 Petrochina Daqing Petrochemical Company Oil Refinery, Daqing 163714, China
引用本文:

隋旭东,李国建,王强,秦学思,周向葵,王凯,左立建. 钛合金切削用Ti1-xAlxN涂层的制备及其切削性能研究*[J]. 金属学报, 2016, 52(6): 741-746.
Xudong SUI, Guojian LI, Qiang WANG, Xuesi QIN, Xiangkui ZHOU, Kai WANG, Lijian ZUO. PREPARATION OF Ti1-xAlxN COATING IN CUTTING TITANIUM ALLOY AND ITS CUTTING PERFORMANCE[J]. Acta Metall Sin, 2016, 52(6): 741-746.

全文: PDF(851 KB)   HTML
摘要: 

采用磁控溅射法制备了不同Al含量的Ti1-xAlxN涂层. 经XRD, SEM, EDX和纳米压痕仪分析发现, Al含量在0.50~0.58 (原子分数, 下同)之间时, Ti1-xAlxN涂层为(111)择优生长的fcc结构. 当Al含量增加到0.63时, 涂层中有六方纤锌矿结构的AlN生成, 涂层硬度降低. 另外, 随着Al含量的增加, 涂层表面颗粒尺寸变大, 涂层变疏松. 钛合金切削实验表明, 涂层刀具的磨损形式主要为黏结磨损和崩刃. 在低速切削(65 m/min)时, Ti0.50Al0.50N涂层刀具的切削性能略好于无涂层刀具, 并且都好于Ti0.42Al0.58N和Ti0.37Al0.63N涂层刀具. 在高速切削(100 m/min)时, Ti0.50Al0.50N涂层刀具有最好的切削性能, 其切削距离比无涂层刀具提高4倍多. 这主要因为Ti0.50Al0.50N涂层表面致密、硬度高, 在钛合金切削时形成的切屑瘤致密而整齐.

关键词 Ti1-xAlxN磁控溅射硬质涂层钛合金切削磨损机理    
Abstract

High-strength lightweight titanium alloy structural materials have been widely used in aerospace and other industry. However, the titanium is hard to machine due to its characteristics of low thermal conductivity, high chemical affinity and low elastic modulus. Coating tools provide a solution to overcome the problem of cutting titanium alloy. Ti1-xAlxN coating is one of the most popular candidates in cutting titanium alloy. However, the cutting performance and wear mechanism of the sputtering Ti1-xAlxN coating should be studied further in order to meet the demands of cutting titanium alloy. In this work, Ti1-xAlxN coatings with different Al contents have been prepared by magnetron sputtering. Microstructure and mechanical properties of the coatings were examined by XRD, SEM, EDX and nanoindenter. Results show that the coatings is a single fcc structure with a (111) preferred orientation when x is in the range of 0.50~0.58 (atomic fraction). When the Al content is 0.63, the hexagonal AlN is formed in the coating and the hardness declines. In addition, the surface particle size of Ti1-xAlxN coatings increases and the coating density decreases with increasing the Al content. The results of titanium cutting experiment indicate that the tool wear is mainly adhesive wear and chipping. The cutting performances of Ti0.50Al0.50N coated tool is slightly better than uncoated tool and are much better than those of Ti0.42Al0.58 and Ti0.37Al0.63N coated tools at a lower cutting speed (65 m/min). The cutting performance of Ti0.50Al0.50N coated tool is the best at a higher cutting speed of 100 m/min and is four times larger than that of uncoated tool. The excellent cutting performance of Ti0.50Al0.50N coating is mainly due to its high surface density and high hardness, which lead to the formation of regular and dense built-up edge during titanium cutting. Therefore, Ti0.50Al0.50N coating with a (111) preferred orientation, dense surface and relatively low Al content is recommended in high speed turning titanium.

Key wordsTi1-xAlxN    magnetron sputtering    hard coating    titanium cutting    wear mechanism
收稿日期: 2015-08-25     
基金资助:*国家科技重大专项基金资助项目2012ZX04003061
图1  不同Al含量的Ti1-xAlxN涂层的XRD谱
图2  Ti1-xAlxN涂层的表面SEM像
图3  不同Al含量的Ti1-xAlxN涂层的硬度和弹性模量
图4  车削钛合金速度为65和100 m/min时无涂层和不同Al含量涂层刀具的后刀面磨损量及磨损形貌
图5  车削钛合金速度为65 m/min时无涂层和不同Al 含量涂层刀具的后刀面磨损SEM像
图6  车削钛合金速度为100 m/min时无涂层和不同Al 含量涂层刀具的后刀面磨损SEM像
[1] Davim J.Machining of Titanium Alloy. Heidelberg, Germany: Springer, 2014: 2
[2] Biksa A, Yamamoto K, Dosbaeva G, Veldhuis S C, Fox-Rabinovich G S, Elfizy A, Wagg T, Shuster L S.Tribo Int, 2010; 43: 1491
[3] Ghani J A, Che Haron C H, Hamdan S H, Md Said A Y, Tomadi S H.Ceram Int, 2013; 39: 4449
[4] Hsieh J H, Liang C, Yu C H, Wu W. Surf Coat Technol, 1998; 108-109: 132
[5] Park I W, Kim K H. J Mater Process Technol, 2002; 130-131: 254
[6] Li M S, Wang F H, Wang T G, Gong J, Sun C, Wen L S.Acta Metall Sin, 2003; 39: 55
[6] (李明升, 王福会, 王铁钢, 宫俊, 孙超, 闻立时. 金属学报, 2003; 39: 55)
[7] Wahlstrom U, Hultman L, Sundgren J E, Adibi F, Petrov I, Greene J E.Thin Solid Films, 1993; 235: 62
[8] Zhao S S, Du H, Zheng J D, Yang Y, Wang W, Gong J, Sun C.Surf Coat Technol, 2008; 202: 5170
[9] Shi J, Pei Z L, Gong J, Sun C, Muders C M, Jiang X.Acta Metall Sin, 2012; 48: 1349
[9] (时婧, 裴志亮, 宫俊, 孙超, Muders C M, 姜辛. 金属学报, 2012; 48: 1349)
[10] Yoo Y H, Le D P, Kim J G, Kim S K, Vinh P V.Thin Solid Films, 2008; 516: 3544
[11] von Richthofen A, Cremer R, Witthaut M, Domnick R, Neuschutz D. Thin Solid Films, 1998; 312: 190
[12] Kester D J, Messier R.J Mater Res, 1993; 8: 1938
[13] Long Y, Zeng J J, Yu D H, Wu S H.Cream Int, 2014; 40: 9889
[14] Su G S, Liu Z Q.Wear, 2012; 289: 124
[15] Deng J X, Wu F F, Lian Y S, Xing Y Q, Li S P.Int J Refract Met Hard Mater, 2012; 35: 10
[16] Makino Y. Mater Sci Eng, 1995; A192/193: 77
[17] Yuan J P, Liu F R, Yu Y G.Nonferr Met, 2009; 61(4): 26
[17] (袁建鹏, 刘福荣, 于月光. 有色金属, 2009; 61(4): 26)
[18] Smith I J, Gillibrand D, Brooks J S, Miinz W D, Harvey S, Goodwin R.Surf Coat Technol, 1997; 90: 164
[19] Ali F, Park B S, Kwak J S.J Ceram Process Res, 2013; 14: 529
[20] Wei Y Q, Gong C Z.Appl Surf Sci, 2011; 257: 7881
[21] Hsu C H, Chen M L, Lai K L.Mater Sci Eng, 2006; A421: 182
[22] Chen L, Du Y, Mayrhofer P H, Wang S Q, Li J.Surf Coat Technol, 2008; 202: 5158
[23] Zhang H J, Chen L Q, Sun J, Wang W G, Wang Q Z.Acta Metall Sin (Engl Lett), 2014; 27: 894
[24] Zhou X K, Wang K, Xu Z F, Wang Q, Li G J, He J C.CMC-Comput Mater Con, 2014; 41: 153
[25] Lazar P, Redinger J, Podloucky R.Phys Rev, 2007; 76B: 174112
[26] Li J, Xia C Q, Liu C B, Dai X Y.Mater Rev, 2003; 17(12): 29
[26] (李佳, 夏长清, 刘昌斌, 戴晓元. 材料导报, 2003; 17(12): 29)
[27] Horling A, Hultman L, Oden M, Sjolen J, Karlsson L.Surf Coat Technol, 2005; 191: 384
[28] Khanna N, Sangwan K S.Proc Inst Mech Eng, 2013; 227B: 465
[29] Nabhani F.Robot Cim-Int Manuf, 2001; 17: 99
[30] Liu Z Q, An Q L, Xu J Y, Chen M, Han S.Wear, 2013; 305: 249
[31] Arrazola P J, Garay A, Iriarte L M, Armendia M, Marya S, Maitre F L.J Mater Process Technol, 2009; 209: 2223
[1] 黄鼎, 乔岩欣, 杨兰兰, 王金龙, 陈明辉, 朱圣龙, 王福会. 基体表面喷丸处理对纳米晶涂层循环氧化行为的影响[J]. 金属学报, 2023, 59(5): 668-678.
[2] 曹庆平, 吕林波, 王晓东, 蒋建中. 物理气相沉积制备金属玻璃薄膜及其力学性能的样品尺寸效应[J]. 金属学报, 2021, 57(4): 473-490.
[3] 刘艳梅, 王铁钢, 郭玉垚, 柯培玲, 蒙德强, 张纪福. Ti-B-N纳米复合涂层的设计、制备及性能[J]. 金属学报, 2020, 56(11): 1521-1529.
[4] 李文涛,王振玉,张栋,潘建国,柯培玲,汪爱英. 电弧复合磁控溅射结合热退火制备Ti2AlC涂层[J]. 金属学报, 2019, 55(5): 647-656.
[5] 吴厚朴,田修波,张新宇,巩春志. 双脉冲HiPIMS放电特性及CrN薄膜高速率沉积[J]. 金属学报, 2019, 55(3): 299-307.
[6] 杨莎莎,杨峰,陈明辉,牛云松,朱圣龙,王福会. N掺杂对磁控溅射Ta涂层微观结构与耐磨损性能的影响[J]. 金属学报, 2019, 55(3): 308-316.
[7] 时惠英, 杨超, 蒋百灵, 黄蓓, 王迪. 双脉冲磁控溅射峰值靶电流密度对TiN薄膜结构与力学性能的影响[J]. 金属学报, 2018, 54(6): 927-934.
[8] 楼白杨,王宇星. Mo含量对CrMoAlN薄膜微观结构和摩擦磨损性能的影响*[J]. 金属学报, 2016, 52(6): 727-733.
[9] 吴法宇,李建伟,齐羿,丁梧桐,樊子铭,周艳文. 粉末靶射频磁控溅射非晶Al2O3薄膜的制备与性能研究*[J]. 金属学报, 2016, 52(12): 1595-1600.
[10] 齐东丽, 雷浩, 范迪, 裴志亮, 宫骏, 孙超. Mo含量对CrMoN复合涂层的组织结构和性能的影响[J]. 金属学报, 2015, 51(3): 371-377.
[11] 杨超,蒋百灵,冯林,郝娟. 靶面放电特性对沉积粒子离化率及沉积行为的影响*[J]. 金属学报, 2015, 51(12): 1523-1530.
[12] 崔文芳,曹栋,秦高梧. 磁控溅射沉积Ti/TiN多层膜的组织特征及耐磨损性能*[J]. 金属学报, 2015, 51(12): 1531-1537.
[13] 马玉田,刘俊标,霍荣岭,韩立,牛耕. 基于磁控溅射法显微CT W-Al透射靶材的制备及其性能研究*[J]. 金属学报, 2015, 51(11): 1416-1424.
[14] 马玉田,刘俊标,霍荣岭,韩立,牛耕. 基于磁控溅射法显微CT W-Al透射靶材的制备及其性能研究*[J]. 金属学报, 2015, 51(11): 1416-1424.
[15] 李小婵, 柯培玲, 刘新才, 汪爱英. 复合高功率脉冲磁控溅射Ti的放电特性及薄膜制备*[J]. 金属学报, 2014, 50(7): 879-885.