Please wait a minute...
金属学报  2016, Vol. 52 Issue (6): 747-754    DOI: 10.11900/0412.1961.2015.00522
  论文 本期目录 | 过刊浏览 |
多弧离子镀TiAlZrCr/(Ti, Al, Zr, Cr)N梯度膜的微观结构与耐磨损性能*
赵时璐1(),张震2,张钧1,王建明1,张正贵1
1 沈阳大学机械工程学院, 沈阳 110044
2 华晨宝马汽车有限公司, 沈阳 110143
MICROSTRUCTURE AND WEAR RESISTANCE OF TiAlZrCr/(Ti, Al, Zr, Cr)N GRADIENT FILMS DEPOSITED BY MULTI-ARC ION PLATING
Shilu ZHAO1(),Zhen ZHANG2,Jun ZHANG1,Jianming WANG1,Zhenggui ZHANG1
1 School of Mechanical Engineering, Shenyang University, Shenyang 110044, China
2 BMW Brilliance Automotive Ltd., Shenyang 110143, China
引用本文:

赵时璐,张震,张钧,王建明,张正贵. 多弧离子镀TiAlZrCr/(Ti, Al, Zr, Cr)N梯度膜的微观结构与耐磨损性能*[J]. 金属学报, 2016, 52(6): 747-754.
Shilu ZHAO, Zhen ZHANG, Jun ZHANG, Jianming WANG, Zhenggui ZHANG. MICROSTRUCTURE AND WEAR RESISTANCE OF TiAlZrCr/(Ti, Al, Zr, Cr)N GRADIENT FILMS DEPOSITED BY MULTI-ARC ION PLATING[J]. Acta Metall Sin, 2016, 52(6): 747-754.

全文: PDF(871 KB)   HTML
摘要: 

采用多弧离子镀技术, 使用Ti-Al-Zr合金靶及Cr单质靶的组合方式, 在W18Cr4V高速钢基体上制备TiAlZrCr/(Ti, Al, Zr, Cr)N四元梯度氮化物膜. 利用SEM和XRD分析梯度膜的微观组织和结构, 使用摩擦磨损试验机研究梯度膜在室温(15 ℃)和高温(500 ℃)下的耐磨损特性, 并采用SEM观察磨痕形貌. 结果表明, 在不同沉积偏压下制备的四元梯度膜均具有fcc-NaCl型的TiN结构, 其组织致密均匀, 呈典型的柱状晶形态. 梯度膜的摩擦磨损机理是以塑性变形为主要特征的黏着磨损, 并伴有轻微的磨粒磨损. 在室温和高温下磨损时的平均摩擦系数分别在0.25~0.30和0.30~0.35之间, 且当沉积偏压增加至-200 V时, 梯度膜的耐磨损性能实现最优化.

关键词 TiAlZrCr/(TiAlZrCr)N梯度膜多弧离子镀偏压显微结构耐磨损性能    
Abstract

Nowadays, the cutting tools are exposed to much more severe operating conditions, i.e. high cutting speed, high feed rate, aggressive mechanical and thermal loading. As a result, the existing hard films have frequently encountered wear-related failures. Such situation requires the new generation hard films concurrently displaying superior hardness, excellent adhesive strength and outstanding wear resistance. Previous studies have demonstrated some promising mechanical properties (hardness and adhesion strength) of TiAlZrCr/(Ti, Al, Zr, Cr)N quaternary gradient films as compared to those of the (Ti, Al)N binary and (Ti, Al, Zr)N or (Ti, Al, Cr)N trinary nitride films. However, the research on wear resistance of hard films under the conditions of high speed and dry friction has been seldom reported. In this work, using combined Ti-Al-Zr alloy and pure Cr targets, TiAlZrCr/(Ti, Al, Zr, Cr)N quaternary nitride films were deposited on high speed steel W18Cr4V substrates by multi-arc ion plating (MAIP) process at various bias voltages of -50, -100, -150 and -200 V. Surface morphology and crystalline struc ture of the gradient films were analyzed by SEM and XRD. Wear resistance of the films was evaluated by abrasion tester at both ambient (15 ℃) and elevated (500 ℃) temperatures. The worn surface morphology was then investigated by SEM. The results show that the deposited TiAlZrCr/(Ti, Al, Zr, Cr)N quaternary nitride films exhibited TiN-type (fcc-NaCl type) structure. The films have uniform and dense columnar morphologies. Furthermore, it was confirmed that the primary wear mechanism was adhesive wear (caused by plastic deformation) accompanied by a slight abrasion. The average values of friction coefficient varied at 0.25~0.30 at ambient temperature and 0.30~0.35 at elevated temperature, respectively. Finally, the best wear resistance was achieved when the bias voltage increased to -200 V.

Key wordsTiAlZrCr/(Ti    Al    Zr    Cr)N gradient film    multi-arc ion plating    bias voltage    microstructure    wear resistance
收稿日期: 2015-10-08     
基金资助:* 辽宁省自然科学基金项目2014020096, 沈阳市科技计划项目F14-231-1-19和沈阳永源光辉机械厂横向项目201521010100051资助
Stage Introduced
gas
Gas pressure
10-1 Pa
Bias voltage
V
Arc current of TiAlZr target / A Arc current of Cr target / A Substrate temperature / ℃ Deposition time / min
Ion bombardment Ar 1.5~2.0 --350 50 40 220~260 10
TiAlZrCr interlayer
deposition
Ar 1.5~2.0 --50, -100,
-150, -200
50 40 260~270 5
(Ti, Al, Zr, Cr)N gradient film deposition N2
1.5~2.0,
2.5~3.0
-50, -100,
-150, -200
50~70
40
260~270
30
表1  TiAlZrCr/(Ti, Al, Zr, Cr)N梯度膜的制备工艺参数
图1  不同偏压沉积TiAlZrCr/(Ti, Al, Zr, Cr)N梯度膜截面形貌的SEM像
图2  W18Cr4V基体上TiAlZrCr/(Ti, Al, Zr, Cr)N梯度膜的XRD谱
图3  不同偏压下沉积TiAlZrCr/(Ti, Al, Zr, Cr)N梯度膜的室温摩擦系数曲线
图4  不同偏压下沉积TiAlZrCr/(Ti, Al, Zr, Cr)N梯度膜的高温(500 ℃)摩擦系数曲线
图5  不同偏压下沉积TiAlZrCr/(Ti, Al, Zr, Cr)N梯度膜的室温磨损形貌的SEM像
图6  不同偏压下沉积TiAlZrCr/(Ti, Al, Zr, Cr)N梯度膜的高温(500 ℃)磨损形貌的SEM像
[1] Mitsuo A, Uchida S, Nihira N, Iwaki M. Surf Coat Technol, 1998; 103-104: 98
[2] Zhang S H, Wang L, Wang Q M, Li M X.Surf Coat Technol, 2013; 214: 160
[3] Zhao S L, Zhang J, Liu C S.Acta Metall Sin (Engl Lett), 2010; 23: 473
[4] Chang Z K, Xiao J Q, Chen Y Q, Liu S C, Gong J, Sun C.Acta Metall Sin, 2012; 48: 547
[4] (常正凯, 肖金泉, 陈育秋, 刘山川, 宫骏, 孙超. 金属学报, 2012; 48: 547)
[5] Yousaf M I, Pelenovich V O, Yang B, Liu C S, Fu D J.Surf Coat Technol, 2015; 265: 117
[6] Du G Y, Ba D C, Tan Z, Sun W, Liu K, Han Q K.Surf Coat Technol, 2013; 229: 172
[7] Sheng Y L, Sheng C W, Jen S C, Jow L H.Surf Coat Technol, 2007; 202: 977
[8] Fox-rabinovich G S, Beake B D, Yamamoto K, Aguirre M H, Veldhuis S C, Dosbaeva G, Elfizy A, Biksa A, Shuster L S.Surf Coat Technol, 2010; 204: 3698
[9] Xu Y X, Chen L, Yang B, Peng Y B, Du Y, Feng J C, Pei F.Surf Coat Technol, 2013; 235: 506
[10] Yang S M, Chang Y Y, Lin D Y, Wang D Y, Wu W.Surf Coat Technol, 2008; 202: 2176
[11] Shi J, Pei Z L, Gong J, Sun C, Muders C M, Jiang X.Acta Metall Sin, 2012; 48: 1349
[11] (时婧, 裴志亮, 宫骏, 孙超, Muders C M, 姜辛. 金属学报, 2012; 48: 1349)
[12] Tetsuhide S, Hidetoshi K, Tomotaro W, Yoshikazu T, Hiroshi N, Kazuo M, Ming Y.Surf Coat Technol, 2014; 250: 44
[13] Xu J H, Ju H B, Yu L H.Acta Metall Sin, 2012; 48: 1132
[13] (许俊华, 鞠洪博, 喻利花. 金属学报, 2012; 48: 1132)
[14] Niu Y S, Wei J, Yu Z M.Surf Coat Technol, 2015; 275: 332
[15] Zhang M, Kim K H, Xu F F, Yang X X. Surf Coat Technol, 2013; 228(S1): S529
[16] Mori T, Noborisaka M, Watanabe T, Suzuki T.Surf Coat Technol, 2012; 213: 216
[17] Gao J, Li C R, Wang N, Du Z M.Int J Miner Metall Mater, 2008; 15: 420
[18] Wang B Y, Li Z X, Yan P, Du J H.Rare Met Mater Eng, 2008; 37: 1407
[18] (王宝云, 李争显, 严鹏, 杜继红. 稀有金属材料与工程, 2008; 37: 1407)
[19] Weber F R, Fontaine F, Scheib M, Bock W. Surf Coat Technol, 2004; 177-178: 227
[20] Chang Y Y, Lai H M.Surf Coat Technol, 2014; 259: 152
[21] Musil J, Daniel R.Surf Coat Technol, 2003; 166(2-3): 243
[22] Zhao S L, Zhang J, Chen W H, Wang S H.Chin J Vaccum Sci Technol, 2013; 33: 214
[22] (赵时璐, 张钧, 陈卫华, 王双红. 真空科学与技术学报, 2013; 33: 214)
[23] Zhao S L, Zhang J, Zhang Z, Wang S H, Zhang Z G.Int J Miner Metall Mater, 2014; 21: 77
[24] Zhao S L, Zhang J, Chen W H, Wang S H.Rare Met Mater Eng, 2014; 43: 341
[24] (赵时璐, 张钧, 陈卫华, 王双红. 稀有金属材料与工程, 2014; 43: 341)
[25] Xu J H, Wang X, Ma S L, Liu Y, Xu K W.Chin J Mater Res, 2008; 22: 201
[25] (徐建华, 王昕, 马胜利, 刘阳, 徐可为. 材料研究学报, 2008; 22: 201)
[26] Zhao S L.PhD Dissertation, Northeastern University, Shenyang, 2010
[26] (赵时璐. 东北大学博士学位论文, 沈阳, 2010)
[1] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[2] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[3] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[4] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[5] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[6] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[7] 王福容, 张永梅, 柏国宁, 郭庆伟, 赵宇宏. Al掺杂Mg/Mg2Sn合金界面的第一性原理计算[J]. 金属学报, 2023, 59(6): 812-820.
[8] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[9] 王迪, 贺莉丽, 王栋, 王莉, 张思倩, 董加胜, 陈立佳, 张健. Pt-Al涂层对DD413合金高温拉伸性能的影响[J]. 金属学报, 2023, 59(3): 424-434.
[10] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[11] 李斗, 徐长江, 李旭光, 李双明, 钟宏. La掺杂PCeyFe3CoSb12 热电材料及涂层的热电性能[J]. 金属学报, 2023, 59(2): 237-247.
[12] 廖京京, 张伟, 张君松, 吴军, 杨忠波, 彭倩, 邱绍宇. Zr-Sn-Nb-Fe-V合金在过热蒸汽中的周期性钝化-转折行为[J]. 金属学报, 2023, 59(2): 289-296.
[13] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[14] 张丽丽, 吉宗威, 赵九洲, 何杰, 江鸿翔. 亚共晶Al-Si合金中微量元素La变质共晶Si的关键影响因素[J]. 金属学报, 2023, 59(11): 1541-1546.
[15] 巩向鹏, 伍翠兰, 罗世芳, 沈若涵, 鄢俊. 自然时效对Al-2.95Cu-1.55Li-0.57Mg-0.18Zr合金160℃人工时效的影响[J]. 金属学报, 2023, 59(11): 1428-1438.