Please wait a minute...
金属学报  2016, Vol. 52 Issue (3): 257-263    DOI: 10.11900/0412.1961.2015.00281
  论文 本期目录 | 过刊浏览 |
K416B镍基铸造高温合金的700 ℃高周疲劳行为*
谢君,于金江(),孙晓峰,金涛
中国科学院金属研究所, 沈阳 110016
HIGH-CYCLE FATIGUE BEHAVIOR OF K416B Ni-BASED CASTING SUPERALLOY AT 700 ℃
Jun XIE,Jinjiang YU(),Xiaofeng SUN,Tao JIN
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

谢君, 于金江, 孙晓峰, 金涛. K416B镍基铸造高温合金的700 ℃高周疲劳行为*[J]. 金属学报, 2016, 52(3): 257-263.
Jun XIE, Jinjiang YU, Xiaofeng SUN, Tao JIN. HIGH-CYCLE FATIGUE BEHAVIOR OF K416B Ni-BASED CASTING SUPERALLOY AT 700 ℃[J]. Acta Metall Sin, 2016, 52(3): 257-263.

全文: PDF(9879 KB)   HTML
摘要: 

通过高周疲劳性能测试和组织形貌观察, 研究了K416B镍基高温合金700 ℃的高周疲劳行为. 结果表明, 在700 ℃和应力比R=-1条件下, 合金疲劳寿命随着应力的升高而减小, 高周疲劳强度为175 MPa; 在低应力条件下, 形变位错在γ基体中发生不同取向滑移, 随着应力增加, 位错剪切γ'相, 形成层错; 在拉压高周疲劳期间, 合金中开动多个滑移系, 并沿不同方向发生扭曲变形, 在γ +γ'共晶及碳化物附近产生应力集中, 致使裂纹源萌生于合金表面附近的共晶及块状碳化物处. 随着高周疲劳进行, 裂纹在扩展区沿枝晶间扩展, 并在瞬断区发生典型的解理断裂.

关键词 K416B镍基高温合金高周疲劳变形机制断裂特征    
Abstract

Ni-based speralloys have been widely used to make the blade parts of the advanced aeroengines for their high temperature tolerance and good mechanical property. During high temperature service, the materials endure the effects of temperature and alternating load, causing high-cycle fatigue deformation on the hot-end components. Meanwhile, the fatigue behaviors of the alloy are closely related to the deformation mechanisms and its microstructure characteristics, such as the size, distribution and morphology of γ' phase and carbides, and the fatigue fracture of the using materials possesses unpredictability. Therefore, investigating fatigue behaviors of the material is of significance in alloy design and life prediction. But the high-cycle fatigue behavior of K416B superalloy with high W content is still unclear up to now. For this reason, by means of high-cycle fatigue property measurement and microstructure observation, the high-cycle fatigue behavior of K416B Ni-based superalloy at 700 ℃ has been investigated. The results show that at 700 ℃ and stress ratio R=-1, the high-cycle fatigue life of K416B superalloy decreases with the stress increasing, and high-cycle fatigue strength of the alloy is 175 MPa. At the condition of low stress amplitude, the deformed dislocations may slip along different orientations in the matrix. With the stress amplitude increasing, the dislocations may shear into γ' phase and form the stacking fault. During tension and compression high-cycle fatigue, multiple slip systems are activated in the alloy, and the distortion occurs along various directions, resulting in stress concentration on the regions of γ +γ' eutectic and carbides. The crack sources may be initiated at the eutectic and blocky carbide near the surface of the alloy. As high-cycle fatigue goes on, the cracks propagate along the inter-dendrite in expansion region, and the typical cleavage fracture occurs in the final rupture region.

Key wordsK416B Ni-based superalloy    high-cycle fatigue    deformation mechanism    fracture feature
收稿日期: 2015-06-08     
基金资助:* 国家重点基础研究发展计划项目2010CB631200和2010CB631206以及国家自然科学基金项目50931004和51571196资助
图1  铸态K416B高温合金的SEM像
图2  K416B高温合金在700 ℃, 应力比为R=-1的高周疲劳应力-循环次数(S-N)曲线
图3  在700 ℃施加不同应力条件下K416B高温合金高周疲劳断裂后的TEM像
图4  在700 ℃施加不同应力条件下K416B高温合金高周疲劳断裂后的SEM像
图5  在700 ℃施加应力220 MPa条件下K416B高温合金高周疲劳断口的SEM像
图6  在700 ℃施加应力260 MPa条件下K416B高温合金高周疲劳断口的SEM像
[1] Wang J, Zhou L Z, Sheng L Y, Guo J T.Mater Des, 2012; 39: 55
[2] Lin Y C, Wen D X, Deng J, Liu G, Chen J.Mater Des, 2014; 59: 115
[3] Francis E M, Grant B M B, Fonseca J Q D, Phillips P J, Mills M J, Daymond M R, Preuss M.Acta Mater, 2014; 74: 18
[4] Musinski W D, McDowell D L.Int J Fatigue, 2012; 37: 41
[5] Gao Y, St?lken J S, Kumar M, Ritchie R O.Acta Mater, 2007; 55:3155
[6] Chu Z K, Yu J J, Sun X F, Guan H R, Hu Z Q.Mater Sci Eng, 2008; A496: 355
[7] Chan K S.Int J Fatigue, 2010; 32: 1428
[8] Morrison D, Moosbrugger J.Int J Fatigue, 1997; 19: 51
[9] Woodford D A, Mowbray D F.Mater Sci Eng, 1974; 16: 35
[10] Lee D, Shin I, Kim Y, Koo J M, Seol C S.Int J Fatigue, 2014; 62: 62
[11] Reuchet J, Rémy L.Mater Sci Eng, 1988; A101: 55
[12] Madison J, Spowart J E, Rowenhorst D J, Fiedler J, Pollock T M.In: Reed R C, Green K A, Caron P, Gabb T P, Fahrmann M G, Huron E S, Woodard S A eds., Superalloys 2008, Pennsylvania: TMS, 2008: 881
[13] Du B N, Yang J X, Cui C Y, Sun X F.Mater Des, 2015; 65: 57
[14] Abbadi M, H?hner P, Belouettar S, Zenasni M.Mater Des, 2011; 32: 2710
[15] Kunz L, Luká? P, Kone?ná R.Int J Fatigue, 2010; 32: 908
[16] Kunz L, Luká? P, Kone?ná R, Fintová S.Int J Fatigue, 2012; 41: 47
[17] Liu Y, Yu J J, Xu Y, Sun X F, Guan H R, Hu Z Q. Mater Sci Eng, 2007; A454-455: 357
[18] Soula A, Renollet Y, Boivin D, Pouchou J L, Locq D, Caron P. Mater Sci Eng, 2009; A510-511: 301
[19] Sajjadi S A, Nategh S, Guthrie R I L.Mater Sci Eng, 2002; A325: 484
[20] Han G M, Zhang Z X, Li J G, Jin T, Sun X F, Hu Z Q.Acta Metall Sin, 2012; 48: 170
[20] (韩国明, 张振兴, 李金国, 金涛, 孙晓峰, 胡壮麒. 金属学报, 2012; 48: 170)
[21] Hirsch M R, Amaro R L, Antolovich S D, Neu T W.Int J Fatigue, 2014; 62: 53
[22] Gelmedin D, Lang K H.Procedia Eng, 2010; 2: 1343
[23] Moalla M, Lang K H, L?he D. Mater Sci Eng, 2001; A319-321: 647
[24] Evans W J, Screech J E, Williams S J.Int J Fatigue, 2008; 30: 257
[25] Huang Z W, Wang Z G, Zhu S J, Yuan F H, Wang F G.Mater Sci Eng, 2006; A432: 308
[26] Xie J, Yu J J, Sun X F, Jin T, Sun Y.Acta Metall Sin, 2015; 51: 458
[26] (谢君, 于金江, 孙晓峰, 金涛, 孙元. 金属学报, 2015; 51: 458)
[27] Xie J, Yu J J, Sun X F, Jin T, Yang Y H. Acta Metall Sin, 2015; 51:943
[27] (谢君, 于金江, 孙晓峰, 金涛, 杨彦红. 金属学报, 2015; 51: 943)
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 李嘉荣, 董建民, 韩梅, 刘世忠. 吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响[J]. 金属学报, 2023, 59(9): 1201-1208.
[3] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[4] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[5] 彭子超, 刘培元, 王旭青, 罗学军, 刘健, 邹金文. 不同服役条件下FGH96合金的蠕变特征[J]. 金属学报, 2022, 58(5): 673-682.
[6] 张金钰, 屈启蒙, 王亚强, 吴凯, 刘刚, 孙军. 金属/高熵合金纳米多层膜的力学性能及其辐照效应研究进展[J]. 金属学报, 2022, 58(11): 1371-1384.
[7] 罗旋, 韩芳, 黄天林, 吴桂林, 黄晓旭. 层状异构Mg-3Gd合金的微观组织和力学性能[J]. 金属学报, 2022, 58(11): 1489-1496.
[8] 余倩, 陈雨洁, 方研. 高熵合金中的元素分布规律及其作用[J]. 金属学报, 2021, 57(4): 393-402.
[9] 李金山, 唐斌, 樊江昆, 王川云, 花珂, 张梦琪, 戴锦华, 寇宏超. 高强亚稳β钛合金变形机制及其组织调控方法[J]. 金属学报, 2021, 57(11): 1438-1454.
[10] 张阳, 邵建波, 陈韬, 刘楚明, 陈志永. Mg-5.6Gd-0.8Zn合金多向锻造过程中的变形机制及动态再结晶[J]. 金属学报, 2020, 56(5): 723-735.
[11] 张哲峰,邵琛玮,王斌,杨浩坤,董福元,刘睿,张振军,张鹏. 孪生诱发塑性钢拉伸与疲劳性能及变形机制[J]. 金属学报, 2020, 56(4): 476-486.
[12] 李嘉荣,谢洪吉,韩梅,刘世忠. 第二代单晶高温合金高周疲劳行为研究[J]. 金属学报, 2019, 55(9): 1195-1203.
[13] 吴正凯, 吴圣川, 张杰, 宋哲, 胡雅楠, 康国政, 张海鸥. 基于同步辐射X射线成像的选区激光熔化Ti-6Al-4V合金缺陷致疲劳行为[J]. 金属学报, 2019, 55(7): 811-820.
[14] 肖伯律, 黄治冶, 马凯, 张星星, 马宗义. 非连续增强铝基复合材料的热变形行为研究进展[J]. 金属学报, 2019, 55(1): 59-72.
[15] 王晨, 王贝贝, 薛鹏, 王东, 倪丁瑞, 陈礼清, 肖伯律, 马宗义. SiCp/6092Al复合材料搅拌摩擦焊接头的疲劳行为研究[J]. 金属学报, 2019, 55(1): 149-159.