Please wait a minute...
金属学报  2014, Vol. 50 Issue (9): 1115-1122    DOI: 10.11900/0412.1961.2014.00079
  本期目录 | 过刊浏览 |
基于位错密度的Fe-22Mn-0.6C型TWIP钢物理本构模型研究
孙朝阳(), 黄杰, 郭宁, 杨竞
北京科技大学机械工程学院, 北京 100083
A PHYSICAL CONSTITUTIVE MODEL FOR Fe-22Mn-0.6C TWIP STEEL BASED ON DISLOCATION DENSITY
SUN Chaoyang(), HUANG Jie, GUO Ning, YANG Jing
School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083
引用本文:

孙朝阳, 黄杰, 郭宁, 杨竞. 基于位错密度的Fe-22Mn-0.6C型TWIP钢物理本构模型研究[J]. 金属学报, 2014, 50(9): 1115-1122.
Chaoyang SUN, Jie HUANG, Ning GUO, Jing YANG. A PHYSICAL CONSTITUTIVE MODEL FOR Fe-22Mn-0.6C TWIP STEEL BASED ON DISLOCATION DENSITY[J]. Acta Metall Sin, 2014, 50(9): 1115-1122.

全文: PDF(1397 KB)   HTML
摘要: 

基于位错密度及孪晶体积分数的演化, 建立了Fe-22Mn-0.6C孪晶诱导塑性(TWIP)钢滑移和孪生的塑性物理本构模型, 该模型考虑了孪晶内的滑移对整体塑性变形的贡献及孪晶区和基体区Taylor因子的差异, 采用基体滑移、孪晶区孪生和滑移的加权求和描述微区塑性变形. 考虑应变速率对热激活应力的影响, 进一步建立了应变速率与屈服应力之间的关系. 采用Euler法对该模型进行数值计算, 将计算结果与实验结果进行对比, 其平均相对误差值只有0.84%, 相对于不考虑孪晶区滑移的模型和考虑孪晶区滑移但未考虑Taylor因子差异的模型, 平均误差分别降低1.1%和2.9%. 分析了孪晶与滑移机制的相互作用及对宏观变形的影响, 结果表明, 孪生速率与滑移速率之间负相关, 孪生速率增大滑移速率减小; 孪生趋于饱和时, 孪生速率降低而滑移速率迅速增加; 应变速率增加屈服应力增大, 而对应变硬化率无显著影响.

关键词 TWIP钢位错密度孪晶诱导塑性本构模型应变速率    
Abstract

Based on the evolution of dislocation density and volume fraction of twins, a physically based constitutive model of Fe-22Mn-0.6C twinning induced plasticity (TWIP) steel has been developed. By taking the influence of slip inside twins on the plastic deformation and the difference of the average Taylor factors between the twinned regions and matrix regions into account, the plastic strain at the representative element was presented as the weighted sum of matrix slip, twinning and slip in twinned regions in this model. A linear function between yield stress and strain rate with natural logarithm was established by considering the effect of strain rate on thermally activated stress. And then, The Euler method was adopted and the parameters of this model were obtained in order to describe as accurately as the experimental results. The results from the model are in good agreement with the experimental results and the average relative error is only 0.84%. Compared with the model free of slip and the model free of the difference of Taylor factor at twinned regions, the average relative error is reduced 1.1% and 2.9%, respectively. The interaction between two twins and the sliding mechanism and its impact on the macro-deformation were investigated. The results show that there is a negative correlation between gliding rate and twinning rate and slip rate decreases with the increase of twinning rate. When the twins become saturated, the twin rate decreases rapidly, being opposite to the slip rate. The yield stress increases and the rate of strain hardening remains approximately unchanged with the increase of strain rate.

Key wordsTWIP steel    dislocation density    twinning induced plasticity    constitutive model    strain rate
    
ZTFLH:  TG142.1  
基金资助:* 国家自然科学基金委员会-中国工程物理研究院联合基金项目U1330121, 国家自然科学基金项目51105029和北京市自然科学基金项目3112019资助
作者简介: null

孙朝阳, 男, 1976年生, 副教授, 博士

图1  晶粒中孪晶示意图
图2  Fe-22Mn-0.6C钢在2种应变速率下的真应力-真应变曲线
图3  Fe-22Mn-0.6C钢在2种应变速率下的应变硬化率
图4  物理本构模型的计算流程图
图5  Fe-22Mn-0.6C钢室温下的屈服应力sy与应变速率lnε? 的关系
Parameter Physical meaning Value
μ Shear modulus / GPa 69
E Young′s modulus / GPa 200
b Magnitude of Burgers vector / m 2.5×10-10
M Taylor factor 3.06
α Mean dislocation strength 0.0895
d Grain size / μm 50
k Forest hardening 0.032
f Dynamic recovery 0.002
ρ0 Initial dislocation density / m2 10-10
F0 Maximum volume fraction of twins 0.2
e Twin mean thickness / nm 100
εinit Critical strain at which twinning begins 0.05
β Material constant 10
m Material constant 11
表1  常温下Fe-22Mn-0.6C钢的材料常数及拟合参数
图6  Fe-22Mn-0.6C钢在2种应变速率下的实验及模拟真应力-真应变曲线对比
图7  Fe-22Mn-0.6C钢在2种应变速率时的实验及模拟应变硬化率曲线对比
图8  应变速率为0.1 s-1时Fe-22Mn-0.6C钢的3种变形分解下的模拟真应力-真应变曲线
图9  应变速率为0.1 s-1时Fe-22Mn-0.6C钢的塑性应变速率、滑移率和孪生率
Decomposition Average relative error
0< e ≤0.2 0.2< e ≤0.4 e >0.4 Total
Excluding slip inside twinning 1.85% 1.18% 2.07% 1.91%
Including slip inside twinning 1.84% 2.34% 4.48% 3.72%
This work 1.88% 0.74% 0.60% 0.84%
  
图10  应变速率为0.1 s-1时Fe-22Mn-0.6C钢的不同变形分解下的位错密度及孪晶体积分数
[1] Mi Z L, Tang D, Yan L, Guo J. J Mater Sci Technol, 2005; 21: 451
[2] Grassel O, Kruger L, Frommeyer G, Meyer L W. Int J Plast, 2000; 16: 1391
[3] Vercammen S, Blanpain B, De Cooman B C, Wollants P. Acta Mater, 2004; 52: 2005
[4] Frommeyer G, Brux U, Neumann P. ISIJ Int, 2003; 43: 438
[5] Bouaziz O. Scr Mater, 2012; 66: 982
[6] Wang S H, Liu Z Y, Zhang W N, Wang G D. Acta Metall Sin, 2009; 45: 573
[6] (王书晗, 刘振宇, 张维娜, 王国栋. 金属学报, 2009; 45: 573)
[7] Renard K, Jacques P J. Mater Sci Eng, 2012; A542: 8
[8] Bouaziz O, Allain S, Scott C P, Cugy P, Barbier D. Curr Opin Solid State Mater Sci, 2011; 15: 141
[9] Gutierrez-Urrutia I, Raabe D. Acta Mater, 2011; 59: 6449
[10] Yang P, Lu F Y, Meng L, Cui F E. Acta Metall Sin, 2010; 46: 657
[10] (杨 平, 鲁法云, 孟 利, 崔凤娥. 金属学报, 2010; 46: 657)
[11] Bouaziz O, Guelton N. Mater Sci Eng, 2001; A319: 246
[12] Allain S, Chateau J P, Bouaziz O. Mater Sci Eng, 2004; A387: 143
[13] Kim J, Estrin Y, Beladi H, Timokhina I, Chin K, Kim S, De Cooman B C. Metall Mater Trans, 2012; 43A: 479
[14] Johnson G R, Cook W H. Eng Fract Mech, 1985; 21: 31
[15] Zerilli F J, Armstrong R W. J Appl Phys, 1987; 61: 1816
[16] Salem A A, Kalidindi S R, Doherty R D, Semiatin S L. Metall Mater Trans, 2006; 37A: 259
[17] Salem A A, Kalidindi S R, Doherty R D. Acta Mater, 2003; 51: 4225
[18] Yu Y, Pan X X, Xie R Z, Zhang F J, Hu W J. Chin J Theory Appl Mech, 2012; 44: 334
[18] (余 勇, 潘晓霞, 谢若泽, 张方举, 胡文军. 力学学报, 2012; 44: 334)
[19] Wu Z Q, Tang Z Y, Li H Y, Zhang H D. Acta Metall Sin, 2012; 48: 593
[19] (吴志强, 唐正友, 李华英, 张海东. 金属学报, 2012; 48: 593)
[20] Koyama M, Sawaguchi T, Lee T, Lee C S, Tsuzaki K. Mater Sci Eng, 2011; A528: 7310
[21] Remy L. Acta Metall, 1978; 26: 443
[22] Voyiadjis G Z, Abed F H. Mech Mater, 2005; 37: 355
[23] Estrin Y, Mecking H. Acta Metall, 1984; 32: 57
[24] Mecking H, Kocks U F. Acta Metall, 1981; 29: 1865
[25] Ismael A M, Ahmed H, Johannes R. Mater Sci Eng, 2009; A504: 40
[26] Allain S, Chateau J P, Bouaziz O, Migot S, Guelton N. Mater Sci Eng, 2004; A387-389: 246
[27] Wang W H. Master Thesis, University of Science and Technology Beijing, 2012
[27] (王伟华. 北京科技大学硕士学位论文, 2012)
[1] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[2] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[3] 王凯, 晋玺, 焦志明, 乔珺威. CrFeNi中熵合金在宽温域拉伸条件下的力学行为与变形本构方程[J]. 金属学报, 2023, 59(2): 277-288.
[4] 王楠, 陈永楠, 赵秦阳, 武刚, 张震, 罗金恒. 应变速率对X80管线钢铁素体/贝氏体应变分配行为的影响[J]. 金属学报, 2023, 59(10): 1299-1310.
[5] 彭俊, 金鑫焱, 钟勇, 王利. 基板表层组织对Fe-16Mn-0.7C-1.5Al TWIP钢可镀性的影响[J]. 金属学报, 2022, 58(12): 1600-1610.
[6] 胡晨, 潘帅, 黄明欣. 高强高韧异质结构温轧TWIP[J]. 金属学报, 2022, 58(11): 1519-1526.
[7] 石增敏, 梁静宇, 李箭, 王毛球, 方子帆. 板条马氏体拉伸塑性行为的原位分析[J]. 金属学报, 2021, 57(5): 595-604.
[8] 李根, 兰鹏, 张家泉. 基于Ce变质处理的TWIP钢凝固组织细化[J]. 金属学报, 2020, 56(5): 704-714.
[9] 李亦庄,黄明欣. 基于中子衍射和同步辐射X射线衍射的TWIP钢位错密度计算方法[J]. 金属学报, 2020, 56(4): 487-493.
[10] 李金许,王伟,周耀,刘神光,付豪,王正,阚博. 汽车用先进高强钢的氢脆研究进展[J]. 金属学报, 2020, 56(4): 444-458.
[11] 董福涛,薛飞,田亚强,陈连生,杜林秀,刘相华. 退火温度对TWIP钢组织性能和氢致脆性的影响[J]. 金属学报, 2019, 55(6): 792-800.
[12] 高钰璧, 丁雨田, 陈建军, 许佳玉, 马元俊, 张东. 挤压态GH3625合金冷变形过程中的组织和织构演变[J]. 金属学报, 2019, 55(4): 547-554.
[13] 许擎栋, 李克俭, 蔡志鹏, 吴瑶. 脉冲磁场对TC4钛合金微观结构的影响及其机理探究[J]. 金属学报, 2019, 55(4): 489-495.
[14] 熊健,魏德安,陆宋江,阚前华,康国政,张旭. 位错密度梯度结构Cu单晶微柱压缩的三维离散位错动力学模拟[J]. 金属学报, 2019, 55(11): 1477-1486.
[15] 张聪惠, 荣花, 宋国栋, 胡坤. 喷丸表面粗糙度对纯Ti焊接接头在HCl溶液中应力腐蚀开裂行为的影响[J]. 金属学报, 2019, 55(10): 1282-1290.