Please wait a minute...
金属学报  2014, Vol. 50 Issue (9): 1109-1114    DOI: 10.11900/0412.1961.2014.00059
  本期目录 | 过刊浏览 |
Mn1.2Fe0.8P0.74Ge0.26-xSex化合物磁热性能研究*
王少博1, 刘丹敏1(), 肖卫强1, 张振路1, 岳明2, 张久兴2
1 北京工业大学固体微结构与性能研究所, 北京 100124
2 北京工业大学材料科学与工程学院, 北京 100124
RESEARCH OF THE MAGNETOCALORIC PROPER- TIES IN Mn1.2Fe0.8P0.74Ge0.26-xSex COMPOUNDS
WANG Shaobo1, LIU Danmin1(), XIAO Weiqiang1, ZHANG Zhenlu1, YUE Ming2, ZHANG Jiuxing2
1 Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124
2 College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124
引用本文:

王少博, 刘丹敏, 肖卫强, 张振路, 岳明, 张久兴. Mn1.2Fe0.8P0.74Ge0.26-xSex化合物磁热性能研究*[J]. 金属学报, 2014, 50(9): 1109-1114.
Shaobo WANG, Danmin LIU, Weiqiang XIAO, Zhenlu ZHANG, Ming YUE, Jiuxing ZHANG. RESEARCH OF THE MAGNETOCALORIC PROPER- TIES IN Mn1.2Fe0.8P0.74Ge0.26-xSex COMPOUNDS[J]. Acta Metall Sin, 2014, 50(9): 1109-1114.

全文: PDF(899 KB)   HTML
摘要: 

利用机械合金化 (MA) 结合放电等离子烧结 (SPS) 技术, 成功制备了Mn1.2Fe0.8P0.74Ge0.26-xSex (x=0, 0.005, 0.01, 0.015, 0.02, 0.03) 化合物, 并采用XRD, DSC, 振动样品磁强计 (VSM) 和磁热效应直接测量仪等手段对其晶体结构、相变过程以及磁热性能进行了研究. 结果表明: 该系化合物均具有六方Fe2P结构. 随着Se含量的增加, 晶格常数a和c都发生了明显的变化, c/a先减小, 然后保持不变, 最后又增大; 且c/a的值与化合物的Curie温度Tc成一定对应关系, c/a减小会升高Tc, 反之则降低Tc. 外加磁场和温度的变化都能引起化合物产生一级磁热相变, 即顺磁相 (PM) ? 铁磁相 (FM). 少量Se对Ge的置换 (x≤0.015) 能够提高材料的磁热性能, 使该系化合物的Tc升高, 转变温区?Tcoex变窄, 绝热温变?Tad增大; 而热滞?Thys和熵变?SDSC基本不变. 当x=0.01时, 化合物的磁热性能最好, 与x=0化合物相比, Tc升高了5.6 K, ?Tcoex降低了10.6%, ?Tad增加了10%, 当Se含量继续增加时, 化合物的磁热性能有所下降.

关键词 MnFePGeSe磁热效应磁相变    
Abstract

Magnetic refrigeration based on the magnetocaloric effect offers a potential energy saving, atmosphere friendly way to replace vapor-compression refrigeration. In this work, Mn1.2Fe0.8P0.74Ge0.26-xSex (x=0, 0.005, 0.01, 0.015, 0.02, 0.03) compounds were prepared by mechanical milling and subsequent spark plasma sintering (SPS) technique, their crystal structures, phase transition process and magnetocaloric properties were investigated by XRD, DSC, VSM and direct measurement equipment of magnetocaloric effect. The results show that the Mn1.2Fe0.8P0.74Ge0.26-xSex compounds possess a hexagonal Fe2P-type crystal structure. With increasing Se concentration, the lattice parameters a and c change significantly. It causes c/a ratio decreases firstly, keeps unchanging and followed by increasing again. And the Curie temperature (Tc) of the compounds is increased with the decrease of the c/a ratio. Either applied magnetic field or temperature change can induce the magnetic transformation between the paramagnetic phase and ferromagnetic phase. Low substitution of Se for Ge (x≤0.015) in the Mn1.2Fe0.8P0.74Ge0.26-xSex compounds leads to higher Tc, narrower temperature range of the two-phase coexistence (?Tcoex) and larger adiabatic temperature change (?Tad), in addition the thermal hysteresis (?Thys) and entropy change (?SDSC) remain almost unaffected. 0.01 Se substitution leads to 5.6 K increase in Tc, 10.6% decrease in ?Tcoex, and 10% increase in ?Tad. With a further increase in Se content, magnetocaloric properties of compound decrease.

Key wordsMnFePGeSe    magnetocaloric effect    magnetic phase transition
    
ZTFLH:  TM271  
基金资助:* 国家自然科学基金项目51071007和51171003以及北京市教委科研计划重点项目KZ201410005005资助
作者简介: null

王少博, 男, 1986年生, 硕士生

图1  Mn1.2Fe0.8P0.74Ge0.26-xSex化合物的XRD谱
x a / nm c / nm c/a Tc / K ?Thys / K ?Tcoex / K ?SDSC / (J·kg-1·K-1)
0 0.61088 0.34534 0.56531 280.2 2.7 8.5 24.1
0.005 0.61081 0.34527 0.56526 279.4 2.6 9.7 22.7
0.01 0.61123 0.34512 0.56464 285.8 3.2 7.6 24.4
0.015 0.61121 0.34504 0.56452 285.8 2.8 9.6 22.4
0.02 0.61132 0.34496 0.56429 285.8 3.0 12.1 23.1
0.03 0.61080 0.34503 0.56488 282.8 3.2 11.6 21.7
表1  Mn1.2Fe0.8P0.74Ge0.26-xSex化合物在333 K的晶格常数和磁热性能
图2  Mn1.2Fe0.8P0.74Ge0.26-xSex化合物的DSC曲线和熵变曲线
图3  Mn1.2Fe0.8P0.74Ge0.26-xSex (x=0, 0.01) 化合物在降温过程中的顺磁相含量
图4  Mn1.2Fe0.8P0.74Ge0.26-xSex化合物的等温磁化曲线
图5  Mn1.2Fe0.8P0.74Ge0.26-xSex (x=0, 0.01) 化合物在0到1, 2和3 T磁场下的磁熵变曲线
图6  Mn1.2Fe0.8P0.74Ge0.26-xSex (x=0, 0.01) 化合物在0~1.5 T的外加磁场下的绝热温变曲线
  
[1] Cam Thanh D T, Brück E, Tegus O, Klaasse J C P, Gortenmulder T J, Buschow K H J. J Appl Phys, 2006; 99: 08Q107
[2] Yan A, Müller K H, Schultz L,Gutfleisch O. J Appl Phys, 2006; 99: 08K903
[3] Dagula W, Tegus O, Fuquan B, Zhang L, Si P Z, Zhang M, Zhang W S, Brück E,de Boer F R, Buschow K H J. IEEE Trans Magn, 2005; 41: 2778
[4] Ou Z Q, Wang G F, Lin S, Tegus O, Brück E, Buschow K H J. J Phys: Condens Matter, 2006; 18: 11577
[5] Tegus O, Fuquan B, Dagula W, Zhang L, Brück E, Si P Z,de Boer F R, Buschow K H J. J Alloys Compd, 2005; 396: 6
[6] Yue M, Li Z Q, Wang X L, Liu D M, Zhang J X, Liu X B. J Appl Phys, 2009; 105: 07A915
[7] Pecharsky V K, Gschneidner K A. Phys Rev Lett, 1997; 78: 4494
[8] Hu F X, Shen B G, Sun J R. Appl Phys Lett, 2001; 78: 3675
[9] Chen W, Zhong W. J Funct Mater, 1998; 29: 236
[9] (陈 伟, 钟 伟. 功能材料, 1998; 29: 236)
[10] Tegus O, Bruck E, Buschow K H J,de Boer F R. Nature, 2002; 415: 150
[11] Tegus O, Brück E, Li X W, Zhang L, Dagula W, de Boer F R, Buschow K H J. J Magn Magn Mater, 2004; 272: 2389
[12] Brück E, Kamarad J, Sechovsky V, Arnold Z, Tegus O, de Boer F R. J Magn Magn Mater, 2007; 310: e1008
[13] Trung N T, Qu Z Q, Gortenmulder T J, Tegus O, Buschow K H J, Brück E. Appl Phys Lett, 2009; 94: 102513
[14] Wang G F, Song L, Li F A, Ha S C L, Li X W, Tegus O. Acta Metall Sin, 2008; 43: 889
[14] (王高峰, 松 林, 李福安, 哈斯朝鲁, 李新文, 特古斯. 金属学报, 2008; 43: 889)
[15] Geng Y X, Tegus O. J Magn Mater Dev, 2011; 42(5): 17
[15] (耿遥祥, 特古斯. 磁性材料及器件, 2011; 42(5): 17)
[16] Ha S C L, Ning J, He X L, Yi R L T, Song L, Tegus O, Huang J H. J Magn Mater Dev, 2010; 41(4): 24
[16] (哈斯朝鲁, 宁 君, 何小龙, 伊日勒图, 松 林, 特古斯, 黄焦宏. 磁性材料及器件, 2010; 41(4): 24)
[17] Liu Y J, Geng Y X, Tegus O,Ha S C L, Song Z Q, Hai S, Li S. J Inner Mongolia Normal Univ, 2012; 41: 368
[17] (刘雨江, 耿遥祥, 特古斯, 哈斯朝鲁, 宋志强, 海 山, 利 胜. 内蒙古师范大学学报, 2012; 41: 368)
[18] Wang D M, Song L, Wang Y H, Zhang W, Geng Y X, Tegus O. Rare Met, 2012; 36: 87
[18] (王冬梅, 松 林, 王耀辉, 张 伟, 耿遥祥, 特古斯. 稀有金属, 2012; 36: 87)
[19] Wang D M, Song L, Wang Y H, Zhang W, Bi L G, Tegus O. Acta Metall Sin, 2011; 47: 344
[19] (王冬梅, 松 林, 王耀辉, 张 伟, 毕力格, 特古斯. 金属学报, 2011; 47: 344)
[20] Liu D M, Huang Q Z, Yue M, Lynn J W, Liu L J, Chen Y, Wu Z H, Zhang J X. Phys Rev, 2009; 80B: 174415
[21] Liu D M, Yue M, Zhang J X, McQueen T M, Lynn J W, Wang X L, Chen Y, Li J Y, Cava R J, Liu X B, Altounian Z, Huang Q. Phys Rev, 2009; 79B: 014435
[22] Gercsi Z, Delczeg-Czirjak E K, Vitos L, Wills A S, Daoud-Aladine A, Sandeman K G. Phys Rev, 2013; 88B: 024417
[23] Delczeg-Czirjak E K, Gercsi Z, Bergqvist L, Eriksson O, Szunyogh L, Nordblad P, Johansson B, Vitos L. Phys Rev, 2012; 85B: 224435
[24] Xu H, Yue M, Zhao C, Zhang D T, Zhang J X. Rare Met, 2012; 31: 336
[25] Zhang L, Liu D M, Deng X J, Yue M, Zhang J X. J Funct Mater, 2011; 42: 1951
[25] (张 雷, 刘丹敏, 邓晓军, 岳 明, 张久兴. 功能材料, 2011; 42: 1951)
[26] Yue M, Liu D M, Huang Q Z, Wang T, Hu F X, Li J B, Rao G H, Shen B G, Lynn J W, Zhang J X. J Appl Phys, 2013; 113: 043925
[27] Zhang M, Liu D M, Liu C X, Huang Q Z, Wang S B, Zhang H, Yue M. Acta Metall Sin, 2013; 49: 783
[27] (张 孟, 刘丹敏, 刘翠秀, 黄清镇, 王少博, 张 虎, 岳 明. 金属学报, 2013; 49: 783)
[28] Liu L J. Master Thesis, Beijing University of Technology, 2009
[28] (刘立江. 北京工业大学硕士学位论文, 2009)
[1] 左良, 李宗宾, 闫海乐, 杨波, 赵骧. 多晶Ni-Mn-X相变合金的织构化与功能行为[J]. 金属学报, 2021, 57(11): 1396-1415.
[2] 耿遥祥,特古斯,汪海斌,董闯,王宇鑫. Sn的加入对MnFe(P, Si)合金显微组织和磁性的影响[J]. 金属学报, 2017, 53(1): 77-82.
[3] 慕利娟, 黄焦宏, 刘翠兰, 程娟, 孙乃坤, 赵增祺. La0.9Ce0.1Fe11.44Si1.56Hy合金及其粉末粘结块体的磁热效应*[J]. 金属学报, 2015, 51(6): 762-768.
[4] 王冬梅 松林 王耀辉 张伟 毕力格 特古斯. MnFeP0.63Ge0.12Si0.25Bx (x=0, 0.01, 0.02, 0.03)化合物的磁热效应[J]. 金属学报, 2011, 47(3): 344-348.
[5] 张从阳 朱洁 张茂才. Mn3(Cu1-xGex)N的负热膨胀现象[J]. 金属学报, 2009, 45(1): 97-101.
[6] 乔桂英; 白象忠 . 单脉冲电流对高速钢裂纹的止裂效果[J]. 金属学报, 2000, 36(7): 718-722 .