Please wait a minute...
金属学报  2014, Vol. 50 Issue (4): 431-438    DOI: 10.3724/SP.J.1037.2013.00754
  本期目录 | 过刊浏览 |
合金元素Al对微B处理特厚钢板淬透性及力学性能的影响*
潘涛(), 王小勇, 苏航, 杨才福
钢铁研究总院工程用钢研究所, 北京 100081
EFFECT OF ALLOYING ELEMENT Al ON HARDENABILITITY AND MECHANICAL PROPERTIES OF MICRO-B TREATED ULTRA-HEAVY PLATE STEELS
PAN Tao(), WANG Xiaoyong, SU Hang, YANG Caifu
Division of Structural Steels, Central Iron and Steel Research Institute, Beijing 100081
引用本文:

潘涛, 王小勇, 苏航, 杨才福. 合金元素Al对微B处理特厚钢板淬透性及力学性能的影响*[J]. 金属学报, 2014, 50(4): 431-438.
Tao PAN, Xiaoyong WANG, Hang SU, Caifu YANG. EFFECT OF ALLOYING ELEMENT Al ON HARDENABILITITY AND MECHANICAL PROPERTIES OF MICRO-B TREATED ULTRA-HEAVY PLATE STEELS[J]. Acta Metall Sin, 2014, 50(4): 431-438.

全文: PDF(4008 KB)   HTML
摘要: 

采用顶端淬火、化学相分析和热力学计算, 研究了合金元素对含B特厚钢板淬透性和力学性能的影响. 结果表明, 由于Ti与N的结合力远高于B, 微量Ti的加入(0.015%, 质量分数, 下同)可形成TiN, 固定N元素, 使B游离, 提高淬透性. 常规Al含量(0.02%)对N的竞争力略低于B, 无法阻止BN的析出; 增加Al含量至0.07%以上, 可提高Al对N的结合力, 固溶B含量增加, 可同样起到提高淬透性的作用. 通过B和固氮元素的组合, 促进淬透性的提高, 可使含B特厚钢板心部的显微组织状态显著改善, 粒状贝氏体数量降低, 马氏体/奥氏体(M/A)岛组分尺寸减小, 低温冲击韧性和强度均有明显提高.

关键词 特厚板淬透性BN粒状贝氏体AlN热力学计算    
Abstract

Utilizing Jominy end quenching test, chemical phase analysis and thermo-dynamical calculation, study of the effect of alloying elements on hardenability and mechanical properties of a B-bearing ultra-heavy plate steel was carried out. The results showed that small amount of Ti addition could form TiN for its much higher bonding ability than B, fixing N element and thus making B free. Normal Al content failed to prevent BN from precipitating due to the weaker competition for N than B. However, when Al content was increased as high as 0.07%, the competition of Al for N was distinctly improved, making solid-solution B increased. For proper chemical combination of B and N-fixing element, hardenability was increased and accordingly both microstructure and mechanical properties were improved so that the quantity and size of martensite/austenite (M/A) islands and granular bainite were decreased markedly, and low-temperature impact toughness and tensile properties were improved by a large degree. The calculation was in a good accord with experimental results.

Key wordsultra-heavy plate    hardenability    BN    granular bainite    AlN    thermo-dynamical calculation
收稿日期: 2013-11-21     
ZTFLH:  TG142.1  
基金资助:*国家科技支撑计划资助项目2011BAE25B01
作者简介: null

潘 涛, 男, 1978年生, 博士

No. Cr* V Al Ti B
1 0.4 - 0.025 - -
2 - 0.06 0.031 - -
3 - - 0.042 - 0.0009
4 - - 0.070 - 0.0007
5 - - 0.027 0.015 0.0010
  
图1  
图2  
图3  
图4  
图5  
图6  
图7  
图8  
图9  
图10  
图11  
图12  
[1] Li R P, Xie Y H, Shu Z. China Offshore Platform, 2003; 18(3): 1
[1] (李润培, 谢永和, 舒 志. 中国海洋平台, 2003;18(3): 1)
[2] Di G B, Liu Z Y, Hao L Q, Liu X H. Mater Mech Eng, 2008; 32(8): 1
[2] (狄国标, 刘振宇, 郝利强, 刘相华. 机械工程材料, 2008; 32(8): 1)
[3] Otani K, Muroka H, Tsuruta S, Hattori K, Kawazoe H. Nippon Steel Technol Rep, 1993; 58: 1
[4] Sharp J V, Binlingham J, Stacey A. Marine Struct, 1999; 12: 349
[5] Taylor K A. ISS Trans, 1993; 14: 7
[6] Zhang Y Q, Zhang R J, Su H, Li L. Iron Steel, 2003; 38(11): 45
[6] (张永权, 张荣久, 苏 航, 李 丽. 钢铁, 2003; 38(11): 45)
[7] Gao Y F. PTCA (Part A: Physical Testing), 2000; 36: 442
[7] (高玉芳. 理化检验-物理分册, 2000; 36: 442)
[8] Izeki Y, Saiki K, Saiki K, Nakamura M, Ohtani H, Watanabe S. Sumitomo Search, 1976; 15(5): 27
[9] Iwasaki N, Tagawa H, Watanabe I, Yamada M, Nagamine T, Endo G. Nippon Kokan Technical Report Overseas, 1980; 30: 1
[10] Takizawa K, Kaji H, Yano K, Okano S. Shinko Steel Technical Report, 1987; 3: 79
[11] Chen A Z, Niu J C, Deng W P. Develop Appl Mater, 2010; (1): 9
[11] (陈爱志, 牛继承, 邓晚平. 材料开发与应用, 2010; (1): 9)
[12] Saiga Y. ISIJ Int, 1989; 29: 799
[13] Chen Z, Wu X C, Wang H B, Min Y A, Zhang H K. J Iron Steel Res, 2008; 20(10): 40
[13] (陈 卓, 吴晓春, 汪宏斌, 闵永安, 张洪奎. 钢铁研究学报, 2008; 20(10): 40)
[14] Pan T, Wang X Y, Wang H, Li Y, Su H, Yang C F. J Iron Steel Res Int, 2011<br/>(suppl): 242
[15] Watanabe S, Ohtani H, Kunitaki T. Trans ISIJ, 1983; 23: 120
[16] Paju M. Iron Steel, 1992; 19: 495
[17] Habu R, Miyata M, Tamukai S, Sekino S. Trans ISIJ, 1983; 23: 176
[18] Shen Y, Hansen S S. Metall Mater Trans, 1997; 28A: 2027
[19] Cias W W. Metall Trans, 1973; 4: 603
[20] Tomita Y, Okabayashi K. Metall Trans, 1986; 7A: 1203
[21] Luo Z J, Shen J C, Su H, Ding Y H, Yang C F, Zhang Y Q, Ma Y. Trans Mater Heat Treat, 2010; 31(10): 63
[21] (罗志俊, 沈俊昶, 苏 航, 丁跃华, 杨才福, 张永权, 马 跃. 材料热处理学报, 2010; 31(10): 63)
[22] Wang C F, Wang M Q, Shi J, Hui W J, Dong H. Scr Mater, 2008; 58: 492
[23] Fang H S, Liu D Y, Bai B Z, Chang K D, Gu J L, Yang Z G. Heat Treat Met, 2001; 26(10): 4
[23] (方鸿生, 刘东雨, 白秉哲, 常开地, 顾家琳, 杨志刚. 金属热处理, 2001; 26(10): 4)
[24] Melloy G F, Summon P R, Podgursky P P. Metall Trans, 1973; 4: 2279
[25] Shikanai N, Kagawa H, Kurihara M. ISIJ Int, 1992; 32: 335
[1] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[2] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[3] 陈维, 陈洪灿, 王晨充, 徐伟, 罗群, 李谦, 周国治. Fe-C-Ni体系膨胀应变能对马氏体转变的影响[J]. 金属学报, 2022, 58(2): 175-183.
[4] 蒋中华, 杜军毅, 王培, 郑建能, 李殿中, 李依依. M-A岛高温回火转变产物对核电SA508-3钢冲击韧性影响机制[J]. 金属学报, 2021, 57(7): 891-902.
[5] 于家英, 王华, 郑伟森, 何燕霖, 吴玉瑞, 李麟. 热浸镀锌高强汽车板界面组织对其拉伸断裂行为的影响[J]. 金属学报, 2020, 56(6): 863-873.
[6] 吕超然, 徐乐, 史超, 刘进德, 蒋伟斌, 王毛球. Al42CrMo螺栓钢淬透性及组织的影响[J]. 金属学报, 2020, 56(10): 1324-1334.
[7] 卢正冠,吴杰,徐磊,崔潇潇,杨锐. Ti2AlNb异形粉末环件的轧制成形与性能研究[J]. 金属学报, 2019, 55(6): 729-740.
[8] 黄宇, 成国光, 谢有. 稀土Ce对钎具钢中夹杂物的改质机理研究[J]. 金属学报, 2018, 54(9): 1253-1261.
[9] 张笑一, 尚海龙, 马冰洋, 李荣斌, 李戈扬. 镀膜Al箔钎料对AlN陶瓷的钎焊[J]. 金属学报, 2018, 54(4): 575-580.
[10] 胡小锋, 姜海昌, 赵明久, 闫德胜, 陆善平, 戎利建. 一种Fe-Cr-Ni-Mo高强高韧合金钢焊接接头的组织和力学性能[J]. 金属学报, 2018, 54(1): 1-10.
[11] 楼白杨,王宇星. Mo含量对CrMoAlN薄膜微观结构和摩擦磨损性能的影响*[J]. 金属学报, 2016, 52(6): 727-733.
[12] 蒋中华,王培,李殿中,李依依. 回火温度对2.25Cr-1Mo-0.25V钢粒状贝氏体显微组织和力学性能的影响*[J]. 金属学报, 2015, 51(8): 925-934.
[13] 韩国民,韩志强,Alan A. Luo,Anil K. Sachdev,柳百成. Mg-Al合金Mg17Al12连续析出相形貌的相场模拟[J]. 金属学报, 2013, 49(3): 277-283.
[14] 梁静静,朱明,袁忠华,王君武,金涛,孙晓峰,胡壮麒. Re对NiCoCrAlY涂层合金相组成的影响[J]. 金属学报, 2013, 49(3): 330-340.
[15] 沈军,冯艾寒. Ti2AlNb基合金微观组织调制及热成形研究进展[J]. 金属学报, 2013, 49(11): 1286-1294.