Please wait a minute...
金属学报  2014, Vol. 50 Issue (4): 439-446    DOI: 10.3724/SP.J.1037.2013.00768
  本期目录 | 过刊浏览 |
基于屈服平台理论开发的600 MPa级高强塑性螺纹钢的研究*
李小龙1, 郭正洪1(), 戎咏华1, 吴海洋2, 姚圣法2
1 上海交通大学材料科学与工程学院, 上海 200240
2 江苏天舜金属材料集团有限公司, 扬中 212200
600 MPa GRADE REBAR WITH HIGH DUCTILITY DEVELOPED BASED ON THEORY OF YIELD PLATEAU
LI Xiaolong1, GUO Zhenghong1(), RONG Yonghua1, WU Haiyang2, YAO Shengfa2
1 School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240
2 Tianshun Group of Jiangsu, Yangzhong 212200
引用本文:

李小龙, 郭正洪, 戎咏华, 吴海洋, 姚圣法. 基于屈服平台理论开发的600 MPa级高强塑性螺纹钢的研究*[J]. 金属学报, 2014, 50(4): 439-446.
Xiaolong LI, Zhenghong GUO, Yonghua RONG, Haiyang WU, Shengfa YAO. 600 MPa GRADE REBAR WITH HIGH DUCTILITY DEVELOPED BASED ON THEORY OF YIELD PLATEAU[J]. Acta Metall Sin, 2014, 50(4): 439-446.

全文: PDF(6267 KB)   HTML
摘要: 

采用冷轧与热处理相结合的方式研究了铁素体晶粒尺寸对力学性能的影响. 将C含量为0.1% (质量分数)的板材经不同道次的冷轧, 随后在600 ℃进行再结晶退火5~300 min, 获得晶粒直径在5.2~40.4 μm之间的铁素体. 室温拉伸实验结果表明, 细化铁素体晶粒不仅提高了强度, 还有效增加了屈服平台延伸率. SEM观察表明, 细化晶粒促进了塑性形变在不同晶粒间的均匀性, 宏观上累积成了较长的屈服平台. 结合Hollomon和Hall-Petch公式导出屈服平台延伸率δL与晶粒尺寸dα之间存在的定量关系, 并确定了公式的适用范围. 采用狭缝喷水实现快速冷却的新方法对HRB400钢筋进行热处理, 不仅获得细晶铁素体, 而且得到高比例的非平衡珠光体, 使材料在获得高强度的同时还具有相当的塑性, 由此开发出具有明显的屈服平台的600 MPa级高强塑性螺纹钢, 该商业用钢的成功开发进一步印证了理论分析的正确性.

关键词 600 MPa级螺纹钢细晶强化屈服平台延伸率    
Abstract

Development of high strength and high ductility rebar with obvious yield plateau is a tendency for anti-seismic requirement in building steels. In this work, the basic relationship between ferrite grain size and mechanical property, especially the elongation of yield plateau, was investigated by the combination of cold-rolling and heat treatment. After several passes of cold rolling followed by recrystallization annealing for 5~300 min at 600 ℃, ferrite with grain size between 5.2~40.4 μm was obtained in plain steel plates with a carbon content of 0.1%(mass fraction). Mechanical properties were studied by tensile test. With the decrease of ferrite grain size, not only the strength but also the elongation of yield plateau increases. Base on the scanning electron microscopy observation, the deformation becomes more homogeneous with the decrease of grain size, resulting in a higher elongation of yield plateau. A quantitative relationship between grain size dα and the elongation of yield plateau δL was derived from the combination of Hollomon and Hall-Petch equations. The application range of dα-δL equation was also determined, which is well consistent with the experimental results. The narrow-slit spraying equipment was used to treat the HRB400 rebar, and refined ferrite and a considerable non-equilibrium pearlite were obtained due to high cooling rate in treatment. A novel rebar with yield strength of 600 MPa grade was manufactured successfully in commerce, which also verified the above theoretical analysis.

Key words600 MPa grade rebar    grain refinement strengthening    elongation of yield plateau
    
ZTFLH:  TG142  
基金资助:* 江苏省科技成果转化专项资金资助项目 BA2012125
作者简介: null

李小龙, 男, 1988年生, 硕士生

[1] Bannister A C. Contribution to Sub-Task 2.3: Assessment of the Occurrence and Significance of Yield Plateaus in Structural Steels. Report No.SINTAP/BS/19, Brite-Euram BE 95-1426, Rotherham: British Steel Plc, 1998: 7
[2] Kot R A, Morris J W. Structure and Properties of Dual-Phase Steels. New York: The Metallurgical Society of AIME, 1979: 304
[3] Kumar A, Singh S B, Ray K K. Mater Sci Eng, 2008; A474: 270
[4] Cottrell A H, Bilby B A. Proc Phys Soc, 1949; 62A: 49
[5] Hale K F, McLean D. J Iron Steel Inst, 1963; 201: 337
[6] Tekin E, Kelly P M. J Iron Steel Inst, 1965; 203: 715
[7] Dollins C, Wert C. Acta Metall, 1969; 17: 711
[8] Cottrell A H, Stokes R J. Proc Roy Soc, 1955; 233A: 17
[9] Tsuchida N, Tomota Y, Nagai K, Fukaura K. Scr Mater, 2006; 54: 57
[10] Fujita H, Miyazaki S. Acta Metall, 1978; 26: 1273
[11] Schulson E M, Weihs T P, Viens D V, Baker I. Acta Metall, 1985; 33: 1587
[12] Hall E O. Yield Point Phenomena in Metals and Alloys. London: Macmillan, 1970: 31
[13] Hall E O. Proc Phys Soc London, 1951; 64B: 747
[14] Petch N J. J Iron Steel Inst, 1953; 174: 25
[15] Wen C S, Rong Y H, Xu Z Y. Trans Mater Heat Treat, 2004; 25: 161
[16] Tsuji N, Ito Y, Saito Y, Minamino Y. Scr Mater, 2002; 47: 893
[17] Takaki S, Kawasaki K, Kimura Y. J Mater Proc Technol, 2001; 117: 359
[18] Song R, Ponge D, Raabe D. Acta Mater, 2005; 53: 4881
[19] Tsuji N, Kamikawa N, Ueji R, Takata N, Koyama H, Terada D. ISIJ Int, 2008; 48: 1114
[20] Tsuchida N, Masuda H, Harada Y, Fukaura K, Tomota Y, Nagai K. Mater Sci Eng, 2008; A488: 446
[21] Zhao M, Yin F, Hanamura T, Nagai K, Atrens A. Scr Mater, 2007; 57: 857
[22] Miller R L. Metall Trans, 1972; 3: 905
[23] Shu D L. Mechanical Property of Engineering Materials. Beijing: Mechanical Industry Press, 2003: 19
[23] (束德林. 工程材料力学性能. 北京: 机械工业出版社, 2003: 19)
[24] Schwarb R, Ruff V. Acta Mater, 2013; 61: 1798
[25] Hu G X,Cai X,Rong Y H. Fundamentals of Materials Science. 2nd Ed., Shanghai: Shanghai Jiao Tong University Press, 2006: 180
[25] (胡赓祥,蔡 珣,戎咏华. 材料科学基础. 第二版, 上海: 上海交通大学出版社, 2006: 180)
[26] Chen N L, Rong Y H, Zuo X W, Guo Z H. Chin Pat, ZL 2011 1 0453958.2, 2013
[26] (陈乃录, 戎咏华, 左训伟, 郭正洪. 中国专利, ZL 2011 1 0453958.2, 2013)
[1] 陈俊, 唐帅,刘振宇,王国栋. 冷却方式对Nb-Ti微合金钢组织和性能及沉淀行为的影响[J]. 金属学报, 2012, 48(4): 441-449.