Please wait a minute...
金属学报  2013, Vol. 49 Issue (3): 330-340    DOI: 10.3724/SP.J.1037.2012.00603
  论文 本期目录 | 过刊浏览 |
Re对NiCoCrAlY涂层合金相组成的影响
梁静静1,朱明2,袁忠华2,王君武2,金涛1,孙晓峰1,胡壮麒1
1) 中国科学院金属研究所高温合金研究部, 沈阳 110016
2) 中航工业贵州黎阳航空发动机(集团)有限公司, 安顺 561114
INFLUENCE OF Re ON THE PHASE CONSTITUENT OF A NiCoCrAlY COATING ALLOY
LIANG Jingjing 1, ZHU Ming 2, YUAN Zhonghua 2, WANG Junwu2, JIN Tao1,SUN Xiaofeng1, HU Zhuangqi1
1) Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2) Aviation Industry Corporation of China (AVIC) Guiyang Aero-engine (group) Corporation LTD., Anshun 561114
引用本文:

梁静静,朱明,袁忠华,王君武,金涛,孙晓峰,胡壮麒. Re对NiCoCrAlY涂层合金相组成的影响[J]. 金属学报, 2013, 49(3): 330-340.
LIANG Jingjing, ZHU Ming, YUAN Zhonghua, WANG Junwu, JIN Tao, SUN Xiaofeng, HU Zhuangqi. INFLUENCE OF Re ON THE PHASE CONSTITUENT OF A NiCoCrAlY COATING ALLOY[J]. Acta Metall Sin, 2013, 49(3): 330-340.

全文: PDF(1463 KB)  
摘要: 

利用Thermo-Calc热力学计算软件和TTNi7镍基高温合金数据库, 研究了Re元素对Ni-20Cr-10Al-20Co合金体系相组成的影响规律.在热力学计算的基础上, 设计了4组不同Re含量的NiCoCrAlY涂层合金, 进行了不同温度的热暴露实验. 研究结果表明, Re的添加, 小幅度地提高了β-NiAl相的含量, 且改变了Cr在各相中的分配, 促进了富Cr的低温稳定相σ和高温稳定相α-Cr的析出, 且σ→α-Cr的相变温度随Re含量的增加而升高. 此外, 实验结果还显示, Re的添加降低了γ-Ni3Al→γ-Ni的相变温度. 对比计算结果和实验结果可发现, TTNi7数据库对MCrAlY合金在相组成演变规律方面的预测与实验结果符合较好, 但在具体的相变温度方面,如γ-Ni3Al→γ-Ni和σ→α-Cr的相变温度,与实验结果还存在较大偏差.

关键词 NiCoCrAlY相组成Re热力学计算    
Abstract

MCrAlY alloy has served as overlay coatings or bond coats in thermal barrier coating systems ingas turbine engines, and its phase constituents play a vital role in determining the performance of these coatingsystems. In order to further understand the influence of Re on the phase constituents of MCrAlY coatings, the phase evolution of a Ni-20Cr-10Al-20Co coating alloy with 0-9% (mass fraction) Re addition was predicted the Thermo-Calc thermodynamic software and TTNi7 Ni-based superalloy database. Based on the calculation results,the four NiCoCrAlY alloys with different levels of Re (0, 3%, 6% and 9%) were prepared, and their phase constituents were experimentally investigated in the temperature range of 800-1250℃. Both the calculation result and the experimental microstructural observation indicated that the addition of Re slightly increased the fraction of β-NiAl phase, but dramatically enhanced the amounts of σ and α-Cr phases. Based on the combined analysis of microstructural observation and EPMA composition identification, it was proposed that the increased amounts of σ and α-Cr phases should result from the changed partition of Cr in all phases caused by Re addition. The σ phase is a low temperature stable phase, and would change to α-Cr phaseas temperature rises. The transformation temperature of σ→α-Cr phase increases as the addition of Re increases.The experimental results also showed that the γ’-Ni3Al→γ-Ni transformation temperature decreases with the addition of Re. In addition, the calculation results were compared with the experimental results and were found to be in reasonable agreement with the experimental observations from the aspect of the MCrAlY phase evolution. Some deviations of the calculation and experiment results about the precise phase-change temperatures, such as γ’-Ni3Al→γ-Ni and σ→α-Cr phase transformation temperatures, were observed, and the reason were discussed in the light of both limited availability of thermodynamic database and experimental problems.

Key wordsNiCoCrAlY    phase constituent    Re    thermodynamic calculation
收稿日期: 2012-10-12     
基金资助:

国家重点基础研究发展计划项目2010CB631200以及国家自然科学基金项目50931004, 50971124, 51071164, 50904059,51071165和51204156资助

作者简介: 梁静静, 女, 1982年生, 助理研究员

[1] Guo M H.PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2005


(郭明虎. 中国科学院金属研究所博士学位论文, 沈阳, 2005)

[2] Mendis B G, Livi K J, Themker K J.Scr Mater, 2006; 55: 589

[3] Poza P, Grant P S.Surf Coat Technol, 2006; 201: 2887

[4] Song P, Lu J S, Zhao B L, Quadakkers W J.Mater Rev, 2007; 21(7): 59

(宋鹏, 陆建生, 赵宝禄, Quadakkers W J. 材料导报, 2007; 21(7): 59)

[5] Wang B, Gong J, Huang M D, Sun C, Huang R F, Wen L S.J Mater Prot, 2001; 34(4): 1

(王冰, 宫骏, 黄美东, 孙超, 黄荣芳, 闻立时. 材料保护, 2001; 34(4): 1)

[6] Li S S, Xiao C B, Li J P, Han Y F.J Aeronaut Mater, 2000; 20(3): 56

(李树索, 肖程波, 李建平, 韩雅芳. 航空材料学报, 2000; 20(3): 56)

[7] Sun C, Wang Q M, Tang Y J, Guan Q F, Gong J, Wen L S.Acta Metall Sin, 2005; 41: 1167

(孙超, 王启民, 唐永吉, 关庆丰, 宫骏, 闻立时. 金属学报, 2005; 41: 1167)

[8] Wang Q M, Wu Y N, Ke P L, Ji A L, Sun C, Huang R F, Wen L S.Acta Metall Sin, 2004; 40: 399

(王启民, 武颖娜, 柯培玲, 纪爱玲, 孙超, 黄荣芳, 闻立时. 金属学报, 2004; 40: 399)

[9] Xu C Z, Jiang S M, Ma J, Gong J, Sun C.Acta Metall Sin, 2009; 45: 964

(徐朝政, 姜肃猛, 马军, 宫骏, 孙超. 金属学报, 2009; 45: 964)

[10] Pint B A, Bestor M A, Haynes J A.Surf Coat Technol, 2011; 206: 1600

[11] Tawancy H M, Abbas N M, Bennett A.Surf Coat Technol, 1994; 68: 10

[12] Shi C X, Zhong Z Y.Acta Metall Sin, 2010; 46: 1281

(师昌绪, 仲增墉. 金属学报, 2010; 46: 1281)

[13] Shi C X, Zhong Z Y.Acta Metall Sin, 1997; 33: 1

(师昌绪, 仲增墉. 金属学报, 1997; 33: 1)

[14] Chen J Y, Zhao B, Feng Q, Cao L M, Sun Z Q.Acta Metall Sin, 2010; 46: 897

(陈晶阳, 赵宾, 冯强, 曹腊梅, 孙祖庆. 金属学报, 2010; 46: 897)

[15] Huang L, Sun X F, Guan H R, Hu Z Q.Surf Coat Technol, 2006; 201: 1421

[16] Liang J J, Wei H, Zhu Y L, Sun X F, Hu Z Q, Dargusch M S, Yao X.J Mater Sci, 2011; 46: 500

[17] Liang J J, Wei H, Zhu Y L, Sun X F, Hu Z Q, Dargusch M S, Yao X D.J Mater Sci Technol, 2011; 27: 408

[18] Phillips M A, Gleeson B.Oxid Met, 1998; 50: 399

[19] Czech N, Schmitz F, Stamm W.Surf Coat Technol, 1994; 68-69: 17

[20] Czech N, Schmitz F, Stamm W.Surf Coat Technol, 1995; 76-77: 28

[21] Tack U.PhD Dissertation,Technische Universitat Bergakademie Freiberg, Fachhochschule Osnabruck, 2004

[22] Hecht J, Goward G W.US Pat, 3928026, 1975

[23] Wang W Z.PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2008

(王文珍. 中国科学院金属研究所博士学位论文, 沈阳, 2008)

[24] Wei H.PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2004

(韦华. 中国科学院金属研究所博士学位论文, 沈阳, 2004)

[25] Huang W, Chang Y A.Mater Sci Eng, 1999; A259: 110

[26] Balanetskyy S, Grushko B.J Alloys Compd, 2008; 457: 348
[1] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[2] 吴国华, 童鑫, 蒋锐, 丁文江. 铸造Mg-RE合金晶粒细化行为研究现状与展望[J]. 金属学报, 2022, 58(4): 385-399.
[3] 陈维, 陈洪灿, 王晨充, 徐伟, 罗群, 李谦, 周国治. Fe-C-Ni体系膨胀应变能对马氏体转变的影响[J]. 金属学报, 2022, 58(2): 175-183.
[4] 张金勇, 赵聪聪, 吴宜谨, 陈长玖, 陈正, 沈宝龙. (Fe0.33Co0.33Ni0.33)84 -x Cr8Mn8B x 高熵非晶合金薄带的结构特征及其晶化行为[J]. 金属学报, 2022, 58(2): 215-224.
[5] 刘健, 彭钦, 谢建新. 选区激光熔化René 88DT高温合金的晶粒组织及冶金缺陷调控[J]. 金属学报, 2021, 57(2): 191-204.
[6] 朱敏, 欧阳柳章. 镁基储氢合金动力学调控及电化学性能[J]. 金属学报, 2021, 57(11): 1416-1428.
[7] 郑锦灿, 刘润聪, 王晓东. 热镀锌工艺中锌液表面流速的在线电磁测量[J]. 金属学报, 2020, 56(7): 929-936.
[8] 于家英, 王华, 郑伟森, 何燕霖, 吴玉瑞, 李麟. 热浸镀锌高强汽车板界面组织对其拉伸断裂行为的影响[J]. 金属学报, 2020, 56(6): 863-873.
[9] 孙飞龙, 耿克, 俞峰, 罗海文. 超洁净轴承钢中夹杂物与滚动接触疲劳寿命的关系[J]. 金属学报, 2020, 56(5): 693-703.
[10] 马小强,杨坤杰,徐喻琼,杜晓超,周建军,肖仁政. 金属Nb级联碰撞的分子动力学模拟[J]. 金属学报, 2020, 56(2): 249-256.
[11] 黄宇, 成国光, 谢有. 稀土Ce对钎具钢中夹杂物的改质机理研究[J]. 金属学报, 2018, 54(9): 1253-1261.
[12] 龚永勇, 程书敏, 钟玉义, 张云虎, 翟启杰. 脉冲磁致振荡凝固技术[J]. 金属学报, 2018, 54(5): 757-765.
[13] 谭丽丽, 陈军修, 于晓明, 杨柯. 生物可降解MgYREZr合金的研究进展[J]. 金属学报, 2017, 53(10): 1207-1214.
[14] 张思倩,王栋,王迪,彭建强. Re对一种定向凝固镍基高温合金微观组织的影响*[J]. 金属学报, 2016, 52(7): 851-858.
[15] 濮晟,谢光,王莉,潘智毅,楼琅洪. Re和W对铸态镍基单晶高温合金再结晶的影响*[J]. 金属学报, 2016, 52(5): 538-548.