Please wait a minute...
金属学报  2014, Vol. 50 Issue (12): 1413-1420    DOI: 10.11900/0412.1961.2014.00306
  本期目录 | 过刊浏览 |
感应回火对1000 MPa级高强度低合金钢碳化物析出行为及韧性的影响
房玉佩, 谢振家, 尚成嘉()
北京科技大学材料科学与工程学院, 北京100083
EFFECT OF INDUCTION TEMPERING ON CARBIDE PRECIPITATION BEHAVIOR AND TOUGHNESS OF A 1000 MPa GRADE HIGH STRENGTH LOW ALLOY STEEL
FANG Yupei, XIE Zhenjia, SHANG Chengjia()
School of Materials Science and Engineering, University Science and Technology Beijing, Beijing 100083
引用本文:

房玉佩, 谢振家, 尚成嘉. 感应回火对1000 MPa级高强度低合金钢碳化物析出行为及韧性的影响[J]. 金属学报, 2014, 50(12): 1413-1420.
Yupei FANG, Zhenjia XIE, Chengjia SHANG. EFFECT OF INDUCTION TEMPERING ON CARBIDE PRECIPITATION BEHAVIOR AND TOUGHNESS OF A 1000 MPa GRADE HIGH STRENGTH LOW ALLOY STEEL[J]. Acta Metall Sin, 2014, 50(12): 1413-1420.

全文: PDF(11158 KB)   HTML
摘要: 

对比研究了电磁感应及传统箱式炉2种不同回火加热方式对1000 MPa级别高强度低合金钢淬火后组织中碳化物的尺寸、形貌、分布及其对力学性能的影响. 结果表明, 实验钢淬火后组织包括下贝氏体及板条马氏体. 2种加热方式回火后, 对于下贝氏体组织, 随着回火温度由400 ℃升高至550 ℃, 碳化物由针状向短棒状转变. 其中, 经550 ℃传统加热回火后, 贝氏体内部碳化物长轴尺寸约为200 nm, 而经该温度电磁感应加热回火后其长轴尺寸约为60 nm. 对于板条马氏体组织, 经传统加热回火后, 碳化物主要沿着板条边界连串析出; 电磁感应加热回火后, 马氏体板条中析出的碳化物在板条内部及边界均匀弥散分布. 经550 ℃传统方式回火后, 马氏体中的碳化物尺寸约为200 nm, 而电磁感应回火的碳化物尺寸均小于100 nm. 经过不同加热方式回火后, 实验钢的硬度差别不显著, 随着回火温度升高, 2种加热方式回火试样冲击功均升高, 但感应加热回火后冲击功升高更为显著, 实验钢经550 ℃电磁感应加热回火后-20 ℃冲击功达到133 J, 是传统加热回火工艺的4.5倍, 实现了1000 MPa级高强度低合金钢良好的强韧化组合.

关键词 高强度低合金钢感应回火韧性纳米尺度碳化物    
Abstract

By comparing induction tempering with conventional tempering, the effect of induction reheating tempering on carbide precipitation behavior and toughness of a 1000 MPa grade high strength low alloy steel was investigated. Microstructures of the steel in different heat treatment stages were characterized using SEM and TEM (with EDS), mechanical properties inclusive of Vickers hardness and toughness were tested. The results showed that microstructure of quenched samples consisted of lath martensite and lower bainite, needle like carbides were observed in lower bainitic lath. With tempering temperature increasing from 400 ℃ to 550 ℃, the shape of carbides located within the bainitic lath gradually changed from needle like to short rod like type. Carbides were fine and well distributed using induction tempering. When the tempering temperature was 550 ℃, the long axis length of short rod like carbides located within the bainitic lath by conventional reheating tempering was 200 nm, whereas the long axis length of short rod like carbides located within the bainitic lath by induction reheating tempering was about 60 nm. When tempering by conventional reheating, carbides mainly precipitated along martensite lath boundaries, while carbides were more dispersed in the matrix lath by induction reheating, the size of these dispersed carbides was less than 100 nm when tempering temperature was 550 ℃. As a result, a superior of mechanical properties with 344 HV and Charpy impact energy of 133 J at -20 ℃ was obtained with induction reheating tempering at 550 ℃.

Key wordshigh strength low alloy steel    induction tempering    toughness    nano-sized carbide
    
ZTFLH:  TG113  
基金资助:*国家重点基础研究发展计划资助项目 2010CB630801
作者简介: null

房玉佩, 女, 1989年生, 硕士生

图1  实验钢淬火态显微组织的SEM像
图2  2种加热方式在不同温度回火后实验钢中贝氏体板条内部显微组织的SEM像
图3  2种加热方式在不同温度回火后实验钢中马氏体板条边界显微组织的SEM像
图4  淬火态和经不同加热方式在550 ℃回火后实验钢析出相的TEM像
图5  实验钢以不同加热方式回火后力学性能与回火温度关系曲线
图6  不同加热方式回火板条内部碳化物长短轴比随温度变化趋势
图7  实验钢淬火及电磁感应回火后复型样品析出相形貌的TEM像及碳化物的EDS
图8  淬火态实验钢550 ℃回火后-20 ℃冲击断口的SEM像
[1] Akihide N, Takayuki I, Tadashi O. JFE Tech Rep, 2008; 6: 13
[2] Li X C, Xie Z J, Wang X L, Wang X M, Shang C J. Acta Metall Sin, 2013; 49: 167
[2] (李秀程, 谢振家, 王学林, 王学敏, 尚成嘉. 金属学报, 2013; 49: 167)
[3] Barani A A, Li F, Romano P, Ponge D, Raabe D. Mater Sci Eng, 2007; A43: 138
[4] Hahn G T. Metall Trans, 1984; 15A: 947
[5] Furuhara T, Kobayashi K, Maki T. ISIJ Int, 2004; 44: 1937
[6] Xie Z J, Fang Y P, Han G, Guo H, Misra R D K, Shang C J. Mater Sci Eng, 2014; A618: 112
[7] Nam W J, Lee C S, Ban D Y. Mater Sci Eng, 2000; A289: 8
[8] Won J N, Dae S K, Soon T A. J Mater Sci Lett, 2003; 38: 3611
[9] Park J S, Lee Y K. Scr Mater, 2007; 57: 109
[10] Revilla C, Uranga P, Lopez B, Rodriguez-Ibabe J M. In: Bai D Q ed., Proc Materials Science and Technology Conference, Cleveland: Steel Product Metallurgy and Applications, 2012: 1069
[11] Lee J B, Kang N, Park J T, Ahn S T, Park Y D, Choi D, Kim K R, Cho K M. Mater Chem Phys, 2011; 129: 365
[12] Soon T A, Dae S K, Won J N. J Mater Process Technol, 2005; 160: 54
[13] Kawasaki K, Chiba T, Yamazaki T. Tetsu Hagané, 1988; 74: 334
[13] (川嵜一博, 千葉貴世, 山崎隆雄. 鉄と鋼, 1988; 74: 334)
[14] Yusa S, Hara T, Tsuzaki K, Takahashi T. Mater Sci Eng, 1999; A273: 462
[15] Ahn S T, Cho K M, Lee S L, Kor J. Inst Met Mater, 2002; 40: 252
[16] Reviall C, López B, Rodriguez-Ibabe J M. Mater Des, 2014; 62: 296
[17] Yong Q L. Secondary Phases in Steel. Beijing: Metallurgical Industry Press, 2006: 226
[17] (雍岐龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 226)
[18] Yang S W, Shang C J, He X L. Int J Miner Met Mater, 2001; 8: 119
[19] Yong Q L, Chen M X, Pei H Z, Pan L, Zhou X L, Yang T W, Zhong W, Hao J Y. J Iron Steel Res, 2006; 18(3): 30
[19] (雍岐龙, 陈明昕, 裴和中, 潘 俐, 周晓玲, 杨天武, 钟 卫, 郝建英. 钢铁研究学报, 2006; 18(3): 30)
[20] Xu Y B, Yu Y M, Wu D, Wang G D. Chin J Mater Res, 2006; 20: 104
[20] (许云波, 于永梅, 吴 迪, 王国栋. 材料研究学报, 2006; 20: 104)
[21] Liu Q D, Chu Y L, Wang Z M, Liu W Q, Zhou B X. Acta Metall Sin, 2008; 44: 1281
[21] (刘庆冬, 褚于良, 王泽民, 刘文庆, 周邦新. 金属学报, 2008; 44:1281)
[22] Liu Q D, Liu W Q, Wang Z M, Zhou B X. Acta Metall Sin, 2009; 45: 1281
[22] (刘庆冬, 刘文庆, 王泽民, 周邦新. 金属学报, 2009; 45: 1281)
[23] Nam W J, Kim D S. J Mater Sci, 2003; 38: 3611
[24] Hayakawa M, Matsuoka S, Tsuzaki K, Hanada H, Sugisaki M. Scr Mater, 2002; 47: 655
[25] Bowen P, Druce S G, Knott J F. Acta Metall, 1987; 35: 1735
[26] Chen Z Z, Ma Y L, Xing S Q, Feng D C, Li H Q. J Inn Mong Univ Sci Technol, 2010; 29: 123
[26] (陈正宗, 麻永林, 邢淑清, 冯佃臣, 李慧琴. 内蒙古科技大学学报, 2010; 29: 123)
[1] 王滨, 牛梦超, 王威, 姜涛, 栾军华, 杨柯. Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646.
[2] 谷瑞成, 张健, 张明阳, 刘艳艳, 王绍钢, 焦大, 刘增乾, 张哲峰. 三维互穿结构SiC晶须骨架增强镁基复合材料制备及其力学性能[J]. 金属学报, 2022, 58(7): 857-867.
[3] 李伟, 贾兴祺, 金学军. 高强韧QPT工艺的先进钢组织调控和强韧化研究进展[J]. 金属学报, 2022, 58(4): 444-456.
[4] 周成, 赵坦, 叶其斌, 田勇, 王昭东, 高秀华. 回火温度对1000 MPaNiCrMoV低碳合金钢微观组织和低温韧性的影响[J]. 金属学报, 2022, 58(12): 1557-1569.
[5] 朱东明, 何江里, 史根豪, 王青峰. 热输入对Q500qE钢模拟CGHAZ微观组织和冲击韧性的影响[J]. 金属学报, 2022, 58(12): 1581-1588.
[6] 胡晨, 潘帅, 黄明欣. 高强高韧异质结构温轧TWIP[J]. 金属学报, 2022, 58(11): 1519-1526.
[7] 陈瑞润, 陈德志, 王琪, 王墅, 周哲丞, 丁宏升, 傅恒志. Nb-Si基超高温合金及其定向凝固工艺的研究进展[J]. 金属学报, 2021, 57(9): 1141-1154.
[8] 蒋中华, 杜军毅, 王培, 郑建能, 李殿中, 李依依. M-A岛高温回火转变产物对核电SA508-3钢冲击韧性影响机制[J]. 金属学报, 2021, 57(7): 891-902.
[9] 杨锐, 马英杰, 雷家峰, 胡青苗, 黄森森. 高强韧钛合金组成相成分和形态的精细调控[J]. 金属学报, 2021, 57(11): 1455-1470.
[10] 罗海文,沈国慧. 超高强高韧化钢的研究进展和展望[J]. 金属学报, 2020, 56(4): 494-512.
[11] 万响亮, 胡锋, 成林, 黄刚, 张国宏, 吴开明. 两步贝氏体转变对中碳微纳结构钢韧性的影响[J]. 金属学报, 2019, 55(12): 1503-1511.
[12] 邵毅, 李彦默, 刘晨曦, 严泽生, 刘永长. 低碳铁素体不锈钢高频直缝电阻焊管退火工艺优化[J]. 金属学报, 2019, 55(11): 1367-1378.
[13] 文明月, 董文超, 庞辉勇, 陆善平. 一种Fe-Cr-Ni-Mo高强钢焊接热影响区的显微组织与冲击韧性研究[J]. 金属学报, 2018, 54(4): 501-511.
[14] 李一哲, 龚宝明, 刘秀国, 王东坡, 邓彩艳. 面外拘束效应对单边缺口拉伸试样断裂韧性的影响[J]. 金属学报, 2018, 54(12): 1785-1791.
[15] 杨柯, 牛梦超, 田家龙, 王威. 新一代飞机起落架用马氏体时效不锈钢的研究[J]. 金属学报, 2018, 54(11): 1567-1585.