Please wait a minute...
金属学报  2013, Vol. 49 Issue (7): 822-830    
  论文 本期目录 | 过刊浏览 |
对流条件下定向凝固包晶合金的相和微观组织选择
王灵水,沈军,商昭,王雷,傅恒志
西北工业大学凝固技术国家重点实验室, 西安 710072
PHASE AND MICROSTRUCTURE SELECTION IN DIRECTIONALLY  SOLIDIFIED  PERITECTIC  ALLOYS UNDER CONVECTION CONDITION
WANG Lingshui, SHEN Jun, SHANG Zhao, WANG Lei, FU Hengzhi
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072
引用本文:

王灵水,沈军,商昭,王雷,傅恒志. 对流条件下定向凝固包晶合金的相和微观组织选择[J]. 金属学报, 2013, 49(7): 822-830.
WANG Lingshui, SHEN Jun, SHANG Zhao, WANG Lei, FU Hengzhi. PHASE AND MICROSTRUCTURE SELECTION IN DIRECTIONALLY  SOLIDIFIED  PERITECTIC  ALLOYS UNDER CONVECTION CONDITION[J]. Acta Metall Sin, 2013, 49(7): 822-830.

全文: PDF(1971 KB)  
摘要: 

利用边界层模型和Bower-Brody-Flemings模型, 分析了对流条件下合金生长界面形态、合金分别以平界面和胞界面生长时界面前沿的溶质分布. 在此基础上,运用充分形核和成分过冷准则以及最高界面温度判据,分析了对流条件下包晶合金定向凝固过程中初生相和包晶相生长界面前沿发生第二相形核转变的条件,建立了对流条件下定向凝固包晶合金的相和微观组织选择模型.此模型不仅涵盖Hunziker模型和Karma模型, 还能预测Hunziker模型和Karma模型所不能反映的对流条件下的混合带状组织和胞状初生相与平界面包晶相的协同生长组织,能够更为合理地解释对流条件下包晶合金的复杂定向凝固组织.将Sn-1.6%Cd(质量分数)包晶合金的理论计算结果和实验结果进行了对比, 两者吻合较好.

关键词 包晶合金定向凝固相选择对流    
Abstract

For the phase and microstructure selection during directional solidification of peritectic alloys, the solute distribution ahead of the solid-liquid interface plays a fundamental role. To study the solute distribution under convection condition, the convection factor (Δ) was introduced into the boundary layer model and Bower-Brody-Flemings model and the solute distribution ahead of the planar and cellular interfaces under convection condition during directional solidification were obtained. Based on these solute distributions, the nucleation and constitutional undercooling criterion and the assumption that the maximum interface growth temperature of phase growth is more stability during directional solidification, the nucleation conditions of new phase ahead of the growth interface under convection condition were analyzed and the phase and microstructure selection map in directionally solidified peritectic alloys under convection condition was developed. Compared with the Hunziker's model that is suit for the phase and microstructure selection of peritectic alloys under diffusive condition and the Karma's model that is used to explain the banded structure formation under convection condition, this model can return to the Hunziker's model under diffusive condition and include the Karma's model. Additionally, this model can predict the mixed banded structure and the coupled growth between the cellular primary phase and planar peritectic phase that can form under convection condition, which these models cannot display. In order to estimate the validity of this model, directional solidification experiments of Sn-1.6%Cd (mass fraction) peritectic alloy were carried out under different convection conditions. The results show that the experimental results are in agreement with the calculated results.That is, this model can explain the complex directional solidification microstructures of peritectic alloys appropriately.

Key wordsperitectic alloy    directional solidification    phase and microstructure selection    convection
收稿日期: 2013-02-01     
基金资助:

国家自然科学基金项目50774061和凝固技术国家重点实验室自主研究课题项目28-TP-2009资助

作者简介: 王灵水, 男, 1982年生, 博士生

[1] Kerr H W, Kurz W.  Int Mater Rev, 1996; 41: 129

[2] Asta M, Beckermann C, Karma A, Kurz W, Napolitano R, Plapp M, Purdy G,Rappaz M, Trivedi R.  Acta Mater, 2009; 57: 941
[3] Boettinger W J, Coriell S R, Greer A L, Karma A, Kurz W, Rappaz M,Trivedi R.  Acta Mater, 2000; 48: 43
[4] Boettinger W J.  Metall Mater Trans, 1974; 5B: 2023
[5] Park J S, Trivedi R.  J Cryst Growth, 1998; 187: 511
[6] Liu D M, Li X Z, Su Y Q, Luo L S, Zhang B, Guo J J, Fu H Z.  Mater Lett, 2011; 65: 1628
[7] Luo L S, Su Y Q, Guo J J, Li X Z, Fu H Z.  Sci China, 2007; 50G: 442
[8] Lo T S, Dobler S, Plapp M, Karma A, Kurz W.  Acta Mater, 2003; 51: 599
[9] Trivedi R.  Metall Mater Trans, 1995; 26A: 1583
[10] Hunziker O, Vandyoussefi M, Kurz W.  Acta Mater, 1998; 46: 6325
[11] Li S M, Liu L, Li X L, Fu H Z.  Acta Metall Sin, 2004; 40: 20
(李双明, 刘林, 李晓历, 傅恒志. 金属学报, 2004; 40: 20)
[12] Li X Z, Guo J J, Su Y Q, Wu S P, Fu H Z.  Acta Metall Sin, 2005; 41: 593
(李新中, 郭景杰, 苏彦庆, 吴士平, 傅恒志. 金属学报, 2005; 41: 593)
[13] Guo J J, Li X Z, Su Y Q, Wu S P, Fu H Z.   Acta Metall Sin, 2005; 41: 599
(郭景杰, 李新中, 苏彦庆, 吴士平, 傅恒志. 金属学报, 2005; 41: 599)
[14] Karma A, Rappel W J, Fuh B C, Trivedi R.  Metall Mater Trans, 1998; 29A: 1457
[15] Mazumder P, Trivedi R.  Phys Rev Lett, 2002; 88: 235507
[16] Luo L S, Zhang Y M, Su Y Q, Wang X, Guo J J, Fu H Z.  Acta Metall Sin, 2011; 47: 275
(骆良顺, 张宇民, 苏彦庆, 王新, 郭景杰, 傅恒志. 金属学报, 2011; 47: 275)
[17] Luo L S, Fu H Z, Zhang Y M, Li X Z, Su Y Q, Guo J J.  Acta Metall Sin, 2011; 47: 284
(骆良顺, 傅恒志, 张宇民, 李新中, 苏彦庆, 郭景杰. 金属学报, 2011; 47: 284)
[18] Nernst W.  Z Phys Chem, 1904; 47: 52
[19] Burton J A, Prim R C, Schlichter W P.  J Chem Phys, 1953; 21: 1987
[20] Bower T F, Brody H D, Flemings M C.  Trans Metall Soc AIME, 1966; 236: 624
[21] Wang L, Shen J, Qin L, Feng Z, Wang L, Fu H.  J Cryst Growth, 2012; 356: 26
[22] Yasuda H, Notake N, Tokieda K, Ohnaka I.  J Cryst Growth, 2000; 210: 637
[23] Dutkiewicz J, Zabdyr L, Moser Z, Salawa J.  J Phase Equil, 1989; 10: 223
[24] Ma D, Li Y, Ng S C.  J Cryst Growth, 2000; 219: 300
[25] Trivedi R, Park J S.  J Cryst Growth, 2002; 235: 572
[26] Liu S, Trivedi R.  Metall Mater Trans, 2006; 37A: 3293
[1] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 张利民, 李宁, 朱龙飞, 殷鹏飞, 王建元, 吴宏景. 交流电脉冲对过共晶Al-Si合金中初生Si相偏析的作用机制[J]. 金属学报, 2023, 59(12): 1624-1632.
[4] 苏震奇, 张丛江, 袁笑坦, 胡兴金, 芦可可, 任维丽, 丁彪, 郑天祥, 沈喆, 钟云波, 王晖, 王秋良. 纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化[J]. 金属学报, 2023, 59(12): 1568-1580.
[5] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[6] 陈瑞润, 陈德志, 王琪, 王墅, 周哲丞, 丁宏升, 傅恒志. Nb-Si基超高温合金及其定向凝固工艺的研究进展[J]. 金属学报, 2021, 57(9): 1141-1154.
[7] 张小丽, 冯丽, 杨彦红, 周亦胄, 刘贵群. 二次枝晶取向对镍基高温合金晶粒竞争生长行为的影响[J]. 金属学报, 2020, 56(7): 969-978.
[8] 王祖敏,张安,陈媛媛,黄远,王江涌. 金属诱导晶化基础与应用研究进展[J]. 金属学报, 2020, 56(1): 66-82.
[9] 许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.
[10] 张健,王莉,王栋,谢光,卢玉章,申健,楼琅洪. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55(9): 1077-1094.
[11] 唐文书,肖俊峰,李永君,张炯,高斯峰,南晴. 再热恢复处理对蠕变损伤定向凝固高温合金γ′相的影响[J]. 金属学报, 2019, 55(5): 601-610.
[12] 方辉,薛桦,汤倩玉,张庆宇,潘诗琰,朱鸣芳. 定向凝固糊状区枝晶粗化和二次臂迁移的实验和模拟[J]. 金属学报, 2019, 55(5): 664-672.
[13] 杨燕, 杨光昱, 罗时峰, 肖磊, 介万奇. Mg-14.61Gd合金的定向凝固组织及生长取向[J]. 金属学报, 2019, 55(2): 202-212.
[14] 金浩, 贾清, 刘荣华, 线全刚, 崔玉友, 徐东生, 杨锐. 籽晶制备及Ti-47Al合金PST晶体取向控制[J]. 金属学报, 2019, 55(12): 1519-1526.
[15] 李芸, 刘连杰, 李新明, 李金富. 过冷Co75B25合金的凝固[J]. 金属学报, 2018, 54(8): 1165-1170.