Please wait a minute...
金属学报  2013, Vol. 49 Issue (7): 789-796    DOI: 10.3724/SP.J.1037.2012.00746
  论文 本期目录 | 过刊浏览 |
纳米晶AZ31镁合金显微组织演变的相场法模拟研究
吴艳1,宗亚平1,张宪刚2
1)东北大学材料各向异性与织构教育部重点实验室, 沈阳 110819
2)沈阳化工大学数理系, 沈阳 110142
MICROSTRUCTURE EVOLUTION OF NANOCRYSTALLINE AZ31 MAGNESIUM ALLOY BY PHASE FIELD SIMULATION
WU Yan1, ZONG Yaping1,ZHANG Xiangang2
1)Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education),Northeastern University, Shenyang 110819
2)Department of Mathematics and Physics, Shenyang University of Chemical Technology, Shenyang 110142
引用本文:

吴艳,宗亚平,张宪刚. 纳米晶AZ31镁合金显微组织演变的相场法模拟研究[J]. 金属学报, 2013, 49(7): 789-796.
WU Yan, ZONG Yaping, ZHANG Xiangang. MICROSTRUCTURE EVOLUTION OF NANOCRYSTALLINE AZ31 MAGNESIUM ALLOY BY PHASE FIELD SIMULATION[J]. Acta Metall Sin, 2013, 49(7): 789-796.

全文: PDF(1706 KB)  
摘要: 

针对模拟初始组织的变化, 对局域自由能密度函数的表达式进行了改进, 建立了纳米尺度下晶界作用域的取值模型,由此考察确定了各模拟参数物理意义的取值, 建立了纳米尺度模拟晶粒生长的相场模型.模拟研究了真实时空下多晶AZ31镁合金纳米晶粒生长过程, 与实验报道数据进行了比较,模拟结果与实验数据吻合较好; 还与常规微米尺度的晶粒生长模拟结果进行了对比,探讨了纳米尺度下微观组织的演变机制. 模拟结果显示: 纳米晶的晶界作用域覆盖了相邻的2个纳米晶粒;界面能约为微米晶界面能的一半, 纳米晶的界面偏析更严重.这可能是使纳米晶界面能动性降低, 从而导致晶粒初期生长速度低的原因.通过定量模拟研究纳米晶的混晶情况发现, 纳米尺度混晶度的增幅比微米尺度更明显.

关键词 镁合金相场模型纳米晶结构晶粒生长    
Abstract

A phase field model has been established to investigate grain growth of nanocrystalline AZ31 Mg alloy under realistic spatial-temporal scales. Most previous phase field models are limited to grain growth at micron scale. A set of rules as following has been proposed to determine the real physical value of all parameters in this new model. The expression of local free energy density function is modified due to the different initial state of grain growth process at nanoscale. The grain boundary range and grain boundary energy are studied to determine the correct gradient and coupling parameters, respectively, where the term of grain boundary range is to explain the physical backgrounds of the order parameter gradients at grain boundary and the diffusion grain boundary. The mobility constant of grain boundary for this model is originated by fitting a group of grain size from experimental results and then the values of grain boundary mobility at different temperatures are calculated by the Arrhenius equation combined with this mobility constant. The study aims especially to find out the mechanisms for nano-structural evolution by comparing the simulated results with experimental results in the literature and simulated results in micron scale. It is shown that the grain boundary range will cover two adjacent grains in nanoscale polycrystalline and the grain boundary energy is lower down to about a half than that in micron scale polycrystalline.It is found that the grain growth rate at nanoscale is slower than that at the micron scale, and these simulated results can be proved by the experimental results in the literature. Simulations expose that solute atoms would like to segregate at the grain boundaries more severely in nano-structure than in micron-structure, and this may be the reason why nano--structure shows a lower boundary mobility to result in a strange low grain growth rate in the first stage.It is found that the grain size fluctuation is more intensely in nano-sized grains than that in micron-sized grains by the quantitative analysis of the mixed degree of grains size in nano-structure and micron-structure in the models.

Key wordsmagnesium alloy    phase field model    nanocrystalline structure    grain growth
收稿日期: 2012-12-18     
基金资助:

国家自然科学基金项目51171040和50771028以及国家高技术研究发展计划项目2013AA031301资助

作者简介: 吴艳, 女, 1984年生, 博士生

[1] Siegel R W, Fougere G E.  Nanostruct Mater, 1995; 6: 205

[2] Youssef K, Scattergood R, Murty K, Koch C.  Scr Mater, 2006; 54: 251
[3] Hao Y L, Yang R.  Acta Metall Sin, 2005; 41: 1183
(郝玉琳, 杨锐. 金属学报, 2005; 41: 1183)
[4] Zong Y P, Wang M T, Guo W.  Acta Phys Sin, 2009; 58: S161
(宗亚平, 王明涛, 郭巍. 物理学报, 2009; 58: S161)
[5] Wang M, Zong B Y, Wang G.  Comput Mater Sci, 2009; 45: 217
[6] Wang M T, Zong Y P, Wang G.  Chin J Nonferrous Met, 2009; 19: 1555
(王明涛, 宗亚平, 王刚. 有色金属学报, 2009; 19: 1555)
[7] Wu Y, Zong B Y, Wang M T.  Mater Sci Forum, 2010; 633: 697
[8] Zhang X G, Zong Y P, Wang M T, Wu Y.  Acta Phys Sin, 2011; 60: 068201
(张宪刚, 宗亚平, 王明涛, 吴艳. 物理学报, 2011; 60: 068201)
[9] Zhang X G, Zong Y P, Wu Y.  Acta Phys Sin, 2012; 61: 088104
(张宪刚, 宗亚平, 吴艳. 物理学报, 2012; 61: 88104)
[10] Karma A, Rappel W J.  Phys Rev, 1996; 53E: 3017
[11] Wen Y, Wang B, Simmons J, Wang Y.  Acta Mater, 2006; 54: 2087
[12] Allen S M, Cahn J W.  Acta Metall, 1979; 27: 1085
[13] Cahn J W, Hilliard J E.J Chem Phys, 1958; 28: 258
[14] Krill III C, Chen L Q.Acta Mater, 2002; 50: 3059
[15] Nishizawa T, translated by Hao S M.  Thermodynamics of Microstructure.
Beijing: Chemical Industry Press, 2006: 136
(Nishizawa T著, 郝士明~译. 微观组织热力学. 北京: 化学工业出版社, 2006: 136)
[16] Shek C, Lai J, Lin G.  Nanostruct Mater, 1999; 11: 887
[17] Fan D, Geng C, Chen Q.  Acta Mater, 1997; 45: 1115
[18] Liu Z, Liang W, Xu B S, Ichinose H.  Mater Sci Technol, 2000; 8: 103
(刘珍, 梁伟, 许并社, 市野濑英喜. 材料科学与工艺, 2000; 8: 103)
[19] Deng C.  Master Thesis, Harbin Institute of Technology, 2009
(邓澄. 哈尔滨工业大学硕士学位论文, 2009)
[20] Gjostein N, Rhines F.  Acta Metall, 1959; 7: 319
[21] Van Swygenhoven H, Farkas D, Caro A.  Phys Rev, 2000; 62B: 831
[22] Wang J Q, Geng P, Zeng M G, Zhang B J, Qian C F.  Chin J Mater Res, 1997; 11: 316
(王建强, 耿平, 曾梅光, 张宝金, 钱存富. 材料研究学报, 1997; 11: 316)
[23] Zhang Y, Tao N, Lu K.  Acta Mater, 2008; 56: 2429
[24] Wen Y, Simmons J, Shen C, Woodward C, Wang Y.  Acta Mater, 2003; 51: 1123
[25] Hillert M.  Acta Metall, 1965; 13: 227
[26] Liu R C, Wang L Y, Gu L G, Huang G S.  Light Alloy Fabric Technol, 2004; 32: 22
(刘饶川, 汪凌云, 辜蕾刚, 黄光胜. 轻合金加工技术, 2004; 32: 22)
[27] Michels A, Krill C, Ehrhardt H, Birringer R, Wu D.  Acta Mater, 1999; 47: 214
[28] Farber B, Cadel E, Menand A, Schmitz G, Kirchheim R.  Acta Mater, 2000; 48: 789
[1] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[2] 邵晓宏, 彭珍珍, 靳千千, 马秀良. 镁合金LPSO/SFs结构间{101¯2}孪晶交汇机制的原子尺度研究[J]. 金属学报, 2023, 59(4): 556-566.
[3] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[4] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[5] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[6] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[7] 陈扬, 毛萍莉, 刘正, 王志, 曹耕晟. 高速冲击载荷下预压缩AZ31镁合金的退孪生行为与动态力学性能[J]. 金属学报, 2022, 58(5): 660-672.
[8] 曾小勤, 王杰, 应韬, 丁文江. 镁及其合金导热研究进展[J]. 金属学报, 2022, 58(4): 400-411.
[9] 罗旋, 韩芳, 黄天林, 吴桂林, 黄晓旭. 层状异构Mg-3Gd合金的微观组织和力学性能[J]. 金属学报, 2022, 58(11): 1489-1496.
[10] 李少杰, 金剑锋, 宋宇豪, 王明涛, 唐帅, 宗亚平, 秦高梧. “工艺-组织-性能”模拟研究Mg-Gd-Y合金混晶组织[J]. 金属学报, 2022, 58(1): 114-128.
[11] 王慧远, 夏楠, 布如宇, 王珵, 查敏, 杨治政. 低合金化高性能变形镁合金研究现状及展望[J]. 金属学报, 2021, 57(11): 1429-1437.
[12] 潘复生, 蒋斌. 镁合金塑性加工技术发展及应用[J]. 金属学报, 2021, 57(11): 1362-1379.
[13] 王雪梅, 殷正正, 于晓彤, 邹玉红, 曾荣昌. AZ31镁合金表面苯丙氨酸、甲硫氨酸和天冬酰胺诱导Ca-P涂层耐蚀性能比较[J]. 金属学报, 2021, 57(10): 1258-1271.
[14] 孙正阳, 杨超, 柳文波. UO2烧结过程的相场模拟[J]. 金属学报, 2020, 56(9): 1295-1303.
[15] 张阳, 邵建波, 陈韬, 刘楚明, 陈志永. Mg-5.6Gd-0.8Zn合金多向锻造过程中的变形机制及动态再结晶[J]. 金属学报, 2020, 56(5): 723-735.