Please wait a minute...
金属学报  2013, Vol. 49 Issue (11): 1295-1302    DOI: 10.3724/SP.J.1037.2013.00441
  论文 本期目录 | 过刊浏览 |
TiAl基合金非平衡凝固过程中的相选择及凝固特征
胡锐,柳翊,张铁邦,寇宏超,李金山
西北工业大学凝固技术国家重点实验室, 西安710072
PHASE SELECTION AND THE SOLIDIFICATION CHARACTERISTICS OF TiAl BASE ALLOYS IN THE NONEQUILIBRIUM SOLIDIFICATION
HU Rui, LIU Yi, ZHANG Tiebang, KOU Hongchao, LI Jinshan
State Key Laboratory of Solidification Processing, NorthwesternPolytechnical University, Xi'an 710072
引用本文:

胡锐,柳翊,张铁邦,寇宏超,李金山. TiAl基合金非平衡凝固过程中的相选择及凝固特征[J]. 金属学报, 2013, 49(11): 1295-1302.
HU Rui, LIU Yi, ZHANG Tiebang, KOU Hongchao, LI Jinshan. PHASE SELECTION AND THE SOLIDIFICATION CHARACTERISTICS OF TiAl BASE ALLOYS IN THE NONEQUILIBRIUM SOLIDIFICATION[J]. Acta Metall Sin, 2013, 49(11): 1295-1302.

全文: PDF(3386 KB)  
摘要: 

通过研究TiAl合金中不同Al含量和不同β相稳定元素含量的变化,分析了Al含量和β相稳定元素对TiAl合金初生相选择与凝固特征的影响.结果表明, 单一β相凝固的TiAl基合金含Al量低, 结晶温度范围窄, 凝固组织均匀细化.采用背散射法(BSE)观察并分析了不同过冷度下铸造TiAl基合金非平衡凝固的枝晶形貌,运用经典竞争形核理论研究了Ti48Al2Cr2Nb (原子分数, %)包晶合金非平衡凝固中β相与α相的形核与过冷度的关系,并计算了Ti48Al2Cr2Nb合金深过冷凝固中的β相(bcc)和α相(hcp)的临界形核功及稳态形核率,结果表明, 在约15 K/s的冷速下, Ti48Al2Cr2Nb合金在所能达到的过冷度(≤370 K)范围内凝固时,β相始终为领先相优先形核. 以过包晶凝固的TiAl基合金, 其Al含量高,结晶温度范围窄, 凝固枝晶细小, 趋向逐层凝固, 可减少并消除糊状凝固所造成的疏松和热裂趋势.β相稳定元素对凝固路径的影响取决于其Al当量,并可使TiAl合金的凝固路径从过包晶凝固转变为亚包晶凝固;过多的Al含量将导致铸造TiAl合金凝固组织中存在过多γ相,从而影响合金的强度和塑性.

关键词 TiAl基合金非平衡凝固相选择过冷初生相    
Abstract

The Al content and the β stabilizers in TiAl base alloys were investigated,which have an important effect on the solidification characteristics and phase selection.TiAl base alloys with single β-solidifying have the characteristics of low Al content and narrow crystallization temperature range. It is attributed to forming a homogeneous fine-grained microstructure. Dendrite morphology in TiAl base alloys is investigated by SEM-BSE in the nonequilibrium solidification conditions. The relationships between undercooling and nucleation of two phases are investigated systematically by using the classical nucleation theory in the undercooled Ti48Al2Cr2Nb (atomic fraction, %) peritectic alloy. By calculating the interfacial critical nucleation work and steady state nucleation rates of β phase (bcc) and α phase (hcp), it is obtained that β phase is always prior to nucleate from the Ti48Al2Cr2Nb undercooled melts at the cooling rate about 15 K/s in the achieved undercooling range. Due to narrow crystallization temperature range, microstructures of TiAl base alloys with high Al content as the hyper-peritectic solidification path take on the gradual solidification style and finer dendrite morphology. It is conducive to reducing and eliminating shrinkage porosity and hot cracking caused by mushy solidification. The β stabilizers have an important effect on solidification path depending on its Al equivalent and will change the solidification path of TiAl alloy from hyper--peritectic solidification to hypo-peritectic solidification. The overmuch Al content in TiAl base alloys leads to the formation of large number of massive γ phase impacting on strength and ductility of alloys.

Key wordsTiAl base alloy    nonequilibrium solidification    phase selection    undercooling, primary phase
收稿日期: 2013-07-25     
基金资助:

国家重点基础研究发展计划资助项目2011CB605503

作者简介: 胡锐, 男, 1968年生, 教授

[1] Appel F, Paul J D H, Oehring M.  Gamma Titanium Aluminide Alloys. Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011: 465

[2] Imayev R M, Imayev V M, Oehring M, Appel F.  Intermetallics, 2007; 15: 451
[3] Huang Z W.  Scr Mater, 2005; 52: 1021
[4] Johnson D R, Chihara K, Inui H, Yamaguchi M.  Acta Mater, 1998; 18: 6529
[5] Huang L, Liaw P K, Liu C T, Liu Y, Huang J S.  Trans Nonferrous Met Soc China, 2011; 21: 2192
[6] Jung I S, Jang H S, Oh M H, Lee J H, Wee D M.  Mater Sci Eng, 2002; A329-331: 13
[7] Li Q C, An G Y, Zhu P Y, He Z M.  Theoretical Basis of Casting Forming.Harbin: Harbin Institute of Technology Press, 1980: 75
(李庆春, 安阁英, 朱培钺, 何镇明. 铸件形成理论基础, 哈尔滨: 哈尔滨工业大学出版社, 1980: 75)
[8] Chen G L, Xu X J, Teng Z K, Wang Y L, Lin J P.  Intermetallics, 2007; 15: 625
[9] Kim Y W.  JOM, 1989; 41: 24
[10] Anderson C D, Hofmeisiter W H, Bayuzick R J.  Metall Trans, 1992; 23A: 2699
[11] Shuleshova O, Woodcock T G, Lindenkreuz H G, Hermann R, Loser W,Buchner B.  Acta Mater, 2007; 55: 681
[12] Kim S W, Wang P, Oh M H, Wee D M, Kumar K S.  Intermetallics, 2004; 12: 499
[13] Zhang Y G, Han Y F, Chen G L, Guo J T, Wan X J, Feng D.  Intermetallic Compound Structure Material.Beijing: National Defense Industry Press, 2001: 701
(张永刚, 韩雅芳, 陈国良, 郭建亭, 万晓景, 冯涤. 金属间化合物结构材料,北京: 国防工业出版社, 2001: 701)
[14] Su Y Q, Liu C, Li X Z, Guo J J, Li B S, Jia J, Fu H Z. Intermetallics, 2005; 13: 267
[15] Ding X F, Lin J P, Zhang L Q, Su Y Q, Hao G J, Chen G L.Intermetallics, 2011; 19: 1115
[16] Daloz D, Hecht U, Zollinger J, Combeau H, Hazotte A, Zaloznik M.Intermetallics, 2011; 19: 749
[17] Hu D, Botten R R.  Intermetallics, 2002; 10: 701
[18] Singh A K, Muraleedharan K, Banerjee D.  Scr Mater, 2003; 48: 767
[19] Hartmann H, Galenko P K, Holland--Moritz D, Kolbe M, Herlach D M,Shuleshova O.  J Appl Phys, 2008; 103: 1
[20] Liu Z G, Chai L H, Chen Y Y, Kong F T.  Acta Metall Sin, 2008; 44: 569
(刘志光, 柴丽华, 陈玉勇, 孔凡涛. 金属学报, 2008; 44: 569)
[21] Wu X H.  Intermetallics, 2006; 14: 1114
[22] Johnson D R, Inui H, Muto S, Omiya Y, Yamanaka T.  Acta Mater, 2006; 54: 1077
[23] Su Y Q, Liu C, Li X Z, Guo J J, Li B S, Jia J, Fu H Z.Intermetallics, 2005; 13: 267
[24] Li M, Xue X Y, Hu R, Zhang T B, Zhong H, Li J S.  J Aeronaut Mater, 2012; 32(2): 1
(李曼, 薛祥义, 胡锐, 张铁邦, 钟宏, 李金山. 航空材料学报, 2012; 32(2): 1)
[25] Johnson D R, Inui H, Yamaguchi M.  Intermetallics, 1998; 6: 647
[26] Zheng Y B, Li S M, Li Z X, Zhu P C, Fu H Z.  J Aeronaut Mater, 2009; 29(4): 12
(郑元斌, 李双明, 李臻熙, 朱鹏超, 傅恒志. 航空材料学报, 2009; 29(4): 12)
[27] Chen Y Z.  Master Thesis, Northwestern Polytechnical University, Xi'an, 2005
(陈豫增. 西北工业大学硕士学位论文, 西安, 2005)
[28] Liu Z E.  Fundamentals of Material Science. Xi'an: Northwestern Polytechnic University Press, 2003: 83
(刘智恩. 材料科学基础, 西安: 西北工业大学出版社, 2003: 83)
[29] Spaepen F.  Mater Sci Eng, 1994; A178: 15
[30] Christian J W.  The Theory of Transformation in Metals and Alloys. Oxford: Pergamon Press, 1965: 418
[31] Turnbull D.  Contemporary Phys, 1969; 10: 473
[1] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[2] 刘帅帅, 侯超楠, 王恩刚, 贾鹏. Zr61Cu25Al12Ti2Zr52.5Cu17.9Ni14.6Al10Ti5 块体非晶合金过冷液相区的塑性流变行为[J]. 金属学报, 2022, 58(6): 807-815.
[3] 丁宗业, 胡侨丹, 卢温泉, 李建国. 基于同步辐射X射线成像液/固复层界面氢气泡的形核、生长演变与运动行为的原位研究[J]. 金属学报, 2022, 58(4): 567-580.
[4] 许军锋, 张宝东, Peter K Galenko. 含有化合物相的共晶转变理论模型[J]. 金属学报, 2021, 57(10): 1320-1332.
[5] 吉宗威,卢松,于慧,胡青苗,Vitos Levente,杨锐. 第一性原理研究反位缺陷对TiAl基合金力学行为的影响[J]. 金属学报, 2019, 55(5): 673-682.
[6] 张建锋,蓝青,郭瑞臻,乐启炽. 交流磁场对过共晶Al-Fe合金初生相的影响[J]. 金属学报, 2019, 55(11): 1388-1394.
[7] 王宝刚, 易红亮, 王国栋, 骆智超, 黄明欣. 原位生成铁基复合材料中TiB2的三维形貌重构[J]. 金属学报, 2019, 55(1): 133-140.
[8] 胡宽辉, 毛新平, 周桂峰, 刘静, 王志奋. Si和Mn含量对超高强度热成形钢组织和性能的影响[J]. 金属学报, 2018, 54(8): 1105-1112.
[9] 李芸, 刘连杰, 李新明, 李金富. 过冷Co75B25合金的凝固[J]. 金属学报, 2018, 54(8): 1165-1170.
[10] 樊丹丹, 许军锋, 钟亚男, 坚增运. 过热温度和冷却速率对过冷Ti熔体凝固过程的影响[J]. 金属学报, 2018, 54(6): 844-850.
[11] 刘峰, 张旭, 张玉兵. 非平衡凝固与固态相变的一体化研究[J]. 金属学报, 2018, 54(5): 701-716.
[12] 翟斌, 周凯, 吕鹏, 王海鹏. 自由落体条件下Ti-6Al-4V合金微液滴的快速凝固研究[J]. 金属学报, 2018, 54(5): 824-830.
[13] 苏彦庆, 刘桐, 李新中, 陈瑞润, 郭景杰, 傅恒志. 籽晶法定向凝固TiAl基合金片层取向控制[J]. 金属学报, 2018, 54(5): 647-656.
[14] 坚增运, 徐涛, 许军锋, 朱满, 常芳娥. 熔体-结晶相固-液界面能的研究进展[J]. 金属学报, 2018, 54(5): 766-772.
[15] 李金富, 周尧和. 液态金属深过冷快速凝固过程中初生固相的重熔[J]. 金属学报, 2018, 54(5): 627-636.