Cu single crystal,fatigue dislocation structure,thermal stability,,recrystallization,annealing twin,"/> 一个共面双滑移取向Cu单晶体疲劳位错结构的热稳定性研究
Please wait a minute...
金属学报  2013, Vol. 49 Issue (1): 107-114    DOI: 10.3724/SP.J.1037.2012.00411
  论文 本期目录 | 过刊浏览 |
一个共面双滑移取向Cu单晶体疲劳位错结构的热稳定性研究
郭巍巍1,齐成军1,李小武1,2
1. 东北大学理学院材料物理与化学研究所, 沈阳 110819
2. 东北大学材料各向异性与织构教育部重点实验室, 沈阳 110819
INVESTIGATIONS ON THERMAL STABILITY OF FATIGUE DISLOCATION STRUCTURES IN A DOUBLE-SLIPORIENTED Cu SINGLE CRYSTAL
GUO Weiwei1, QI Chengjun1, LI Xiaowu1,2
1. Institute of Materials Physics and Chemistry, College of Sciences, Northeastern University, Shenyang 110819
2. Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819
引用本文:

郭巍巍,齐成军,李小武. 一个共面双滑移取向Cu单晶体疲劳位错结构的热稳定性研究[J]. 金属学报, 2013, 49(1): 107-114.
GUO Weiwei, QI Chengjun, LI Xiaowu. INVESTIGATIONS ON THERMAL STABILITY OF FATIGUE DISLOCATION STRUCTURES IN A DOUBLE-SLIPORIENTED Cu SINGLE CRYSTAL[J]. Acta Metall Sin, 2013, 49(1): 107-114.

全文: PDF(1141 KB)  
摘要: 

在不同塑性应变幅下对[233]共面双滑移取向Cu单晶体进行疲劳实验直至循环饱和, 然后在不同温度进行退火处理.利用SEM-ECC和TEM观察疲劳位错结构及其退火后微观结构的变化. 结果表明, 退火温度为300 ℃时, 位错结构均发生了明显的回复, 高应变幅下疲劳样品中甚至出现了部分再结晶. 在500和800 ℃退火, 所有晶体都发生了严重的再结晶, 并且有大量的退火孪晶出现. 随着塑性应变幅和累积塑性应变量的增加, 应变集中程度明显增加, 为再结晶的发生和孪晶的萌生提供了更大的局部应变能, 所以再结晶发生得更为显著, 退火孪晶变得更为粗大且数量增加. 退火孪晶的形成与层错的出现有密切关系. DSC测试分析表明, 再结晶的发生不是突发式的, 而是一个缓慢的过程.

关键词 Cu单晶体疲劳位错结构热稳定性再结晶退火孪晶    
Abstract

Although comprehensive research findings of the cyclic deformation and dislocation structures of Cu single crystals with various orientations have been well established over the four decades, studies on the thermal stability of dislocation structures in fatigued Cu single crystals are still rarely reported. In the present work, [233] Cu single crystals oriented for coplanar double slip were firstly cyclically deformed at different plastic strain amplitudes γpl up to saturation, and then annealed at different temperatures for 30 min.The dislocation structures induced by cyclic deformation as well as the microstructural changes resulting from subsequent annealing treatments were detected by using the electron channeling contrast (ECC) technique in SEM and TEM. It was found that the dislocation structures have undergone an obvious process of recovery at 300 ℃,and the recrystallization even partially takes place in the sample fatigued at highγpl. However,at 500 and 800 ℃, the violent recrystallization takes place in all crystals and a large number of annealing twins have appeared. As the plastic strain amplitude and accumulated plastic strain increase, the degree of strain concentration would be significantly aggravated, providing a higher local strain energy for the occurrence of recrystallization and the initiation of twins, so that the recrystallization takes place more noticeably, and annealing twins become coarser and the number of them increases notably. The formation of annealing twins is closely related to the appearance of stacking faults. The DSC measurements demonstrated that the recrystallization process and the formation process of twins should be a gradually-developing process, instead of a suddenly-forming process.

 
Key wordsCu single crystal')" href="#">
收稿日期: 2012-07-10     
基金资助:

 

国家自然科学基金项目51071041, 51231002和51271054, 中央高校基本科研业务费项目N110105001和高等学校博士学科点专
作者简介: 郭巍巍, 女, 蒙古族, 1985年生, 博士生

 


[1] Mughrabi H. Mater Sci Eng, 1978; 33: 207

[2] Jin N Y, Winter A T. Acta Metall, 1984; 32: 989

[3] Basinski Z S, Basinski S J. Prog Mater Sci, 1992; 36: 89

[4] Suresh S. Fatigue of Materials. 2nd Ed., London: Cambridge University Press, 1998: 28

[5] Li X W. PhD Thesis, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 1998

(李小武. 中国科学院金属研究所博士学位论文, 沈阳, 1998)

[6] Li X W, Wang Z G, Li S X. Philos Mag Lett, 1999; 79: 715

[7] Zhang J X, Jiang Y Y. Int J Plast, 2005; 21: 2191

[8] Zhang J X, Jiang Y Y. Acta Mater, 2007; 55: 1831

[9] Li P, Li S X, Wang Z G, Zhang Z F. Prog Mater Sci, 2011; 56: 328

[10] Steckmeyer A, Sauzay M, Weidner A, Hieckmann E. Int J Fatigue, 2012; 40: 154

[11] Ackermann F, Kubin L P, Lepinous J, Mughrabi H. Acta Metall, 1984; 32: 715

[12] Li X W, Hu Y M, Wang Z G. Mater Sci Eng, 1998; A248: 299

[13] Li X W, Zhang Z F, Wang Z G, Li S X, Umakoshi Y. Defect Diffusion Forum, 2001; 188-199: 153

[14] Li X W, Umakoshi Y, Gong B, Li S X, Wang Z G. Mater Sci Eng, 2002; A333: 51

[15] Li P, Zhang Z F, Li X W, Li S X, Wang Z G. Acta Mater, 2009; 57: 4845

[16] Zhou Y, Li X W, Zhang G P, Zhang Z F. Mater Sci Technol, 2009; 17: 649

(周杨, 李小武, 张广平, 张哲峰. 材料科学与工艺, 2009; 17: 649)

[17] Li X W, Zhou Y, Guo W W, Zhang G P. Cryst Res Technol, 2009; 44: 315

[18] Guo W W, Wang X M, Li X W. Mater Trans, 2010; 51: 887

[19] Li P, Li S X, Wang Z G, Zhang Z F. Acta Mater, 2010; 58: 3281

[20] Tabata T, Fujita H, Hiraoka M, Onishi I C. Philos Mag, 1983; 47A: 841

[21] Wang Z R. Scr Mater, 1998; 39: 493

[22] Chen S, Gottstein S. Mater Sci Eng, 1989; 110: 9

[23] Kuhlman-Wilsdorf D. Trans Met Soc AIME, 1962; 224: 1047

[24] Glazov M, Llanes L M, Laird C. Phys Stat Sol, 1995; 149A: 297

[25] Li X W, Wang Z G, Li S X. Mater Sci Eng, 1999; A260: 132

[26] Li X W, Wang Z G, Zhang Y W, Li S X, Umakoshi Y. Phys Stat Sol, 2002; 191A: 97

[27] Zhou Y, Li X W, Yang R Q. Int J Mater Res, 2008; 99: 958

[28] Kopzky C V, Novikov V Y, Fionova L K. Acta Metall, 1985; 33: 873

[29] Yang G, Sun L J, Zhang L N, Wang L M, Wang C. Chin J Iron Steel Res, 2009; 21: 39

(杨钢, 孙利军, 张丽娜, 王立民, 王昌. 钢铁研究学报, 2009; 21: 39)

[30] Zhu R, Li S X, Li Y, Li M Y, Chao Y S. Acta Metall Sin, 2004; 40: 467

(朱荣, 李守新, 李勇, 李明扬, 晁月盛. 金属学报, 2004; 40: 467)

[31] Guo W W, Ren H, Qi C J, Wang X M, Li X W. Acta Phys Sin, 2012; 61: 156201-1

(郭巍巍, 任焕, 齐成军, 王小蒙, 李小武. 物理学报, 2012; 61: 156201-1)

[32] Xiao S H, Guo J D, Wu S D, He G H, Li S X. Acta Metall Sin, 2002; 38: 161

(肖素红, 郭敬东, 吴世丁, 何冠虎, 李守新. 金属学报, 2002; 38: 161)

[33] Pande C S, Imam M A, Rath B B. Metall Trans, 1990; 21A: 2891

[34] Mahajan S, Pande C S, Imam M A, Rath B B. Acta Mater, 1997; 45: 2633

[35] Xia S, Li H, Zhou B X, Chen W J. Chin J Nature, 2010; 32: 94

(夏爽, 李慧, 周邦新, 陈文觉. 自然杂志, 2010; 32: 94)

 
[1] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[3] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[4] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[5] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[6] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[7] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[8] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[9] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[10] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.
[11] 胡晨, 潘帅, 黄明欣. 高强高韧异质结构温轧TWIP[J]. 金属学报, 2022, 58(11): 1519-1526.
[12] 聂金凤, 伍玉立, 谢可伟, 刘相法. Al-AlN异构纳米复合材料的组织构型与热稳定性[J]. 金属学报, 2022, 58(11): 1497-1508.
[13] 姜巨福, 张逸浩, 刘英泽, 王迎, 肖冠菲, 张颖. RAP法制备AlSi7Mg合金半固态坯料研究[J]. 金属学报, 2021, 57(6): 703-716.
[14] 王一涵, 原园, 喻嘉彬, 吴宏辉, 吴渊, 蒋虽合, 刘雄军, 王辉, 吕昭平. 纳米晶合金热稳定性的熵调控设计[J]. 金属学报, 2021, 57(4): 403-412.
[15] 王晓波, 王墉哲, 程旭东, 蒋蓉. 大气条件下AlCrON基光谱选择性吸收涂层的热稳定性[J]. 金属学报, 2021, 57(3): 327-339.