Please wait a minute...
金属学报  2013, Vol. 29 Issue (4): 451-456    DOI: 10.3724/SP.J.1037.2012.00718
  论文 本期目录 | 过刊浏览 |
气动悬浮冷速控制及Al-7.7Ca共晶合金的凝固组织
张龙1),张曙光1),余建定2),李建国1)
1) 上海交通大学材料科学与工程学院, 上海 200240
2) 中国科学院上海硅酸盐研究所, 上海 200050
COOLING RATE CONTROL AND SOLIDIFIED MICROSTRUCTURE OF Al-7.7Ca EUTECTIC ALLOY DURING AERODYNAMIC LEVITATION
ZHANG Long1), ZHANG Shuguang 1), YU Jianding 2), LI Jianguo1)
1) School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240
2) Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050
引用本文:

张龙,张曙光,余建定,李建国. 气动悬浮冷速控制及Al-7.7Ca共晶合金的凝固组织[J]. 金属学报, 2013, 29(4): 451-456.
ZHANG Long, ZHANG Shuguang, YU Jianding, LI Jianguo. COOLING RATE CONTROL AND SOLIDIFIED MICROSTRUCTURE OF Al-7.7Ca EUTECTIC ALLOY DURING AERODYNAMIC LEVITATION[J]. Acta Metall Sin, 2013, 29(4): 451-456.

全文: PDF(2229 KB)  
摘要: 

分析了气动悬浮金属样品在凝固过程中的激光能量吸收、热辐射以及对流换热特性, 推导出激光功率调控下的冷速控制公式. 根据气动悬浮Al-7.7Ca共晶合金样品的温度-时间曲线, 验证了计算与实测结果符合较好. 金相观察表明, 气动悬浮Al-7.7Ca共晶合金在低冷速下凝固时呈现规则层片共晶形态;随着冷速提高, 过冷度增大, 晶粒细化, 层片间距减小, 不规则粒状共晶的体积分数不断增加, 证实不规则共晶形成于凝固初期的快速凝固阶段. 规则共晶的层片间距与过冷度的关系符合经典的JH理论, 说明其形成于再辉后的慢速凝固阶段.

关键词 铝合金气动悬浮冷却速率凝固组织    
Abstract

The aerodynamic levitation process, which possesses the advantages of containerless solidification, easy control and versatility to materials, is a kind of advanced materials processing technology. How to accurately control the cooling rate during aerodynamic levitation is quite important for studying the processing-structure-property relationship of metallic materials. In this study, the characteristics of laser absorption, thermal radiation and heat convection of an aerodynamically levitated sample were analyzed, and a formula for the control of the cooling rate by means of tuning the laser power has been derived, which is described by:ΔTt=-3[σε(Ts4-Tf4)+h(Ts-T0)]/cρr+α(6Ls-3kΔt)/8cρπr3. By recording temperature-time curves with cooling rates of 9, 49, 98 and 253 ℃/s for the aerodynamically levitated Al-7.7Ca (mass fraction, %) eutectic alloy, the calculated values of cooling rates agree very well with the experimental data, verifying and validating the formula. Also, the microstructure of the aerodynamically levitated Al-7.7Ca eutectic alloy under different cooling rates was examined using OM and SEM. The metallographic observation shows that, under a low cooling rate of 9℃/s, the solidification structure of Al-7.7Ca alloy during aerodynamic levitation exhibits lamellar regular eutectic. With increasing the cooling rate, the undercooling measured from the recorded temperature-time curves increases, resulting in the refinement of the grain size and interlamellar spacing of regular eutectic. Moreover,  there appears granular anomalous eutectic under higher cooling rates of 49, 98 and 253 ℃/s. The volume fraction of anomalous eutectic is increased with increasing the cooling rate. The anomalous eutectic is attributed to the formation during the rapid solidification stage. By measuring the interlamellar spacing of regular eutectic from Al-7.7Ca metallographs, the fitting data of interlamellar spacing and undercooling are in accordance with the classical JH model, showing that the regular eutectic is formed during slow solidification stage after recalescence.

Key wordsaluminum alloy    aerodynamic levitation    cooling rate    solidification,    microstructure
收稿日期: 2012-12-06     
基金资助:

国家自然科学基金项目51027005和上海市科委资助项目11JC1405900资助

作者简介: 张龙, 男, 1989年生, 硕士生

[1] Yu J D, Ishikawa T, Paradis P.  J Crystal Growth, 2006; 292: 480


[2] Bertero G A, Hofmeister W H, Robinson M B, Bayuzick R J.  Metall Trans, 1991; 22A: 2713

[3] Deng K, Ren Z M, Chen J Q, Jiang G C.  Acta Metall Sin, 1999; 35: 739

(邓康, 任忠鸣, 陈坚强, 蒋国昌. 金属学报, 1999; 35: 739)

[4] Oran W A, Berge L H, Parker H W.  Rev Sci Instrum, 1980; 51: 625

[5] Daniele F, Nada B, Majid N, Dimos P.  J Appl Phys, 2011; 109: 093503

[6] Chen L, Luo X H.  Acta Metall Sin, 2007; 43: 769

(陈亮, 罗兴宏. 金属学报, 2007; 43: 769)

[7] Ren L N, Cai E, Feng S.  Acta Metall Sin, 2008; 44: 307

(任利娜, 蔡鳄, 冯生. 金属学报, 2008; 44: 307)

[8] Hu L, Lu X Y, Hou Z M.  Physics, 2007; 36: 944

(胡亮, 鲁晓宇, 侯智敏. 物理, 2007; 36: 944)

[9] Wall J J, Weber R, Kim J, Liaw P K, Choo H.  Mater Sci Eng, 2007; A445-446: 219

[10] Yasutomo A, Paul F P, Tomotsugu A, Takehiko I, Shinichi Y.  Rev Sci Instrum, 2003; 74: 1057

[11] Taniguchi H, Yu J D, Arai Y, Yagi T, Fu D, Itoh M.  Ferroelectrics, 2007; 346: 156

[12] Arai Y, Aoyama T, Yoda S.  Rev Sci Instrum, 2004; 75: 2262

[13] Lee K J, Lee C H, Lee G W, Hwang W S, Lee C H, Yoda S, Cho W S.  Thermochim Acta, 2012; 542: 37

[14] Sakai I, Murai K, Jiang L, Umesaki N, Honma T, Kitano A.  J Electron Spectrosc Relat Phenom, 2005; 144-147: 1011

[15] Jia L M, Xu D M, Guo J J, Bai S H, Wang H H.  Chin J Nonferrous Met, 2010; 20: 667

(贾丽敏, 徐达鸣, 郭景杰, 白世鸿, 王红红. 中国有色金属学报, 2010; 20: 667

[16] Massalski T B, Subramanian P R, Okamoto H, Kacprzak L.  Binary Alloy Phase Diagrams. Materials Park, OH: ASM International, 1990: 1

[17] Yang C L, Yang G C, Lu Y P, Chen J Q, Zhou Y H.  Acta Metall Sin, 2005; 41: 1053

(杨长林, 杨根仓, 卢一平, 陈甲琪, 周尧和. 金属学报, 2005; 41: 1053)

[18] Li J F, Yang G C, Zhou Y H.  Acta Metall Sin, 1998; 34: 113

(李金富, 杨根仓, 周尧和. 金属学报, 1998; 34: 113)

[19] Wang Y G, Kuang H, Huang Q.  Chin J Univ Metrology, 2012; 23: 139

(王玉刚, 匡环, 黄其. 中国计量学院学报, 2012; 23: 139)

[20] Huang Y L, Yang F H, Liang G Y, Su J Y.  Chin J Lasers, 2003; 30: 449

(黄延禄, 杨福华, 梁工英, 苏俊义. 中国激光, 2003; 30: 449)

[21] Wang N, Cao C D, Wei B B.  Acta Metall Sin, 1998; 34: 824

(王楠, 曹崇德, 魏炳波. 金属学报, 1998; 34: 824)

[22] Pu J, Wang J F, Xiao J Z, Gan Z H, Yi H Y.  Chin J Nonferrous Met, 2003; 13: 835

(蒲健, 王敬丰, 肖建中, 甘章华, 易回阳. 中国有色金属学报, 2003; 13: 835)

[23] Wei B, Herlach D M, Feuerbacher B, Sommer F.  Acta Metall Mater, 1993; 41: 1801

[24] Xu Z, Yao S S.  Theories of Material Processing. Beijing: Science Press, 2003: 78

(徐洲, 姚寿山. 材料加工原理. 北京: 科学出版社, 2003: 78)

[25] Jackson K A, Hunt J D.  Trans Met Soc AIME, 1966; 236: 1129
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[3] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[6] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[10] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[11] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[12] 郭福, 杜逸晖, 籍晓亮, 王乙舒. 微电子互连用锡基合金及复合钎料热-机械可靠性研究进展[J]. 金属学报, 2023, 59(6): 744-756.
[13] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[14] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[15] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.