Please wait a minute...
金属学报  2013, Vol. 29 Issue (4): 451-456    DOI: 10.3724/SP.J.1037.2012.00718
  论文 本期目录 | 过刊浏览 |
气动悬浮冷速控制及Al-7.7Ca共晶合金的凝固组织
张龙1),张曙光1),余建定2),李建国1)
1) 上海交通大学材料科学与工程学院, 上海 200240
2) 中国科学院上海硅酸盐研究所, 上海 200050
COOLING RATE CONTROL AND SOLIDIFIED MICROSTRUCTURE OF Al-7.7Ca EUTECTIC ALLOY DURING AERODYNAMIC LEVITATION
ZHANG Long1), ZHANG Shuguang 1), YU Jianding 2), LI Jianguo1)
1) School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240
2) Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050
全文: PDF(2229 KB)  
摘要: 

分析了气动悬浮金属样品在凝固过程中的激光能量吸收、热辐射以及对流换热特性, 推导出激光功率调控下的冷速控制公式. 根据气动悬浮Al-7.7Ca共晶合金样品的温度-时间曲线, 验证了计算与实测结果符合较好. 金相观察表明, 气动悬浮Al-7.7Ca共晶合金在低冷速下凝固时呈现规则层片共晶形态;随着冷速提高, 过冷度增大, 晶粒细化, 层片间距减小, 不规则粒状共晶的体积分数不断增加, 证实不规则共晶形成于凝固初期的快速凝固阶段. 规则共晶的层片间距与过冷度的关系符合经典的JH理论, 说明其形成于再辉后的慢速凝固阶段.

关键词 铝合金气动悬浮冷却速率凝固组织    
Abstract

The aerodynamic levitation process, which possesses the advantages of containerless solidification, easy control and versatility to materials, is a kind of advanced materials processing technology. How to accurately control the cooling rate during aerodynamic levitation is quite important for studying the processing-structure-property relationship of metallic materials. In this study, the characteristics of laser absorption, thermal radiation and heat convection of an aerodynamically levitated sample were analyzed, and a formula for the control of the cooling rate by means of tuning the laser power has been derived, which is described by:ΔTt=-3[σε(Ts4-Tf4)+h(Ts-T0)]/cρr+α(6Ls-3kΔt)/8cρπr3. By recording temperature-time curves with cooling rates of 9, 49, 98 and 253 ℃/s for the aerodynamically levitated Al-7.7Ca (mass fraction, %) eutectic alloy, the calculated values of cooling rates agree very well with the experimental data, verifying and validating the formula. Also, the microstructure of the aerodynamically levitated Al-7.7Ca eutectic alloy under different cooling rates was examined using OM and SEM. The metallographic observation shows that, under a low cooling rate of 9℃/s, the solidification structure of Al-7.7Ca alloy during aerodynamic levitation exhibits lamellar regular eutectic. With increasing the cooling rate, the undercooling measured from the recorded temperature-time curves increases, resulting in the refinement of the grain size and interlamellar spacing of regular eutectic. Moreover,  there appears granular anomalous eutectic under higher cooling rates of 49, 98 and 253 ℃/s. The volume fraction of anomalous eutectic is increased with increasing the cooling rate. The anomalous eutectic is attributed to the formation during the rapid solidification stage. By measuring the interlamellar spacing of regular eutectic from Al-7.7Ca metallographs, the fitting data of interlamellar spacing and undercooling are in accordance with the classical JH model, showing that the regular eutectic is formed during slow solidification stage after recalescence.

Key wordsaluminum alloy    aerodynamic levitation    cooling rate    solidification,    microstructure
收稿日期: 2012-12-06     
基金资助:

国家自然科学基金项目51027005和上海市科委资助项目11JC1405900资助

通讯作者: 张曙光     E-mail: sgzhang@sjtu.edu.cn
作者简介: 张龙, 男, 1989年生, 硕士生

引用本文:

张龙,张曙光,余建定,李建国. 气动悬浮冷速控制及Al-7.7Ca共晶合金的凝固组织[J]. 金属学报, 2013, 29(4): 451-456.
ZHANG Long, ZHANG Shuguang, YU Jianding, LI Jianguo. COOLING RATE CONTROL AND SOLIDIFIED MICROSTRUCTURE OF Al-7.7Ca EUTECTIC ALLOY DURING AERODYNAMIC LEVITATION. Acta Metall Sin, 2013, 29(4): 451-456.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2012.00718      或      https://www.ams.org.cn/CN/Y2013/V29/I4/451

[1] Yu J D, Ishikawa T, Paradis P.  J Crystal Growth, 2006; 292: 480


[2] Bertero G A, Hofmeister W H, Robinson M B, Bayuzick R J.  Metall Trans, 1991; 22A: 2713

[3] Deng K, Ren Z M, Chen J Q, Jiang G C.  Acta Metall Sin, 1999; 35: 739

(邓康, 任忠鸣, 陈坚强, 蒋国昌. 金属学报, 1999; 35: 739)

[4] Oran W A, Berge L H, Parker H W.  Rev Sci Instrum, 1980; 51: 625

[5] Daniele F, Nada B, Majid N, Dimos P.  J Appl Phys, 2011; 109: 093503

[6] Chen L, Luo X H.  Acta Metall Sin, 2007; 43: 769

(陈亮, 罗兴宏. 金属学报, 2007; 43: 769)

[7] Ren L N, Cai E, Feng S.  Acta Metall Sin, 2008; 44: 307

(任利娜, 蔡鳄, 冯生. 金属学报, 2008; 44: 307)

[8] Hu L, Lu X Y, Hou Z M.  Physics, 2007; 36: 944

(胡亮, 鲁晓宇, 侯智敏. 物理, 2007; 36: 944)

[9] Wall J J, Weber R, Kim J, Liaw P K, Choo H.  Mater Sci Eng, 2007; A445-446: 219

[10] Yasutomo A, Paul F P, Tomotsugu A, Takehiko I, Shinichi Y.  Rev Sci Instrum, 2003; 74: 1057

[11] Taniguchi H, Yu J D, Arai Y, Yagi T, Fu D, Itoh M.  Ferroelectrics, 2007; 346: 156

[12] Arai Y, Aoyama T, Yoda S.  Rev Sci Instrum, 2004; 75: 2262

[13] Lee K J, Lee C H, Lee G W, Hwang W S, Lee C H, Yoda S, Cho W S.  Thermochim Acta, 2012; 542: 37

[14] Sakai I, Murai K, Jiang L, Umesaki N, Honma T, Kitano A.  J Electron Spectrosc Relat Phenom, 2005; 144-147: 1011

[15] Jia L M, Xu D M, Guo J J, Bai S H, Wang H H.  Chin J Nonferrous Met, 2010; 20: 667

(贾丽敏, 徐达鸣, 郭景杰, 白世鸿, 王红红. 中国有色金属学报, 2010; 20: 667

[16] Massalski T B, Subramanian P R, Okamoto H, Kacprzak L.  Binary Alloy Phase Diagrams. Materials Park, OH: ASM International, 1990: 1

[17] Yang C L, Yang G C, Lu Y P, Chen J Q, Zhou Y H.  Acta Metall Sin, 2005; 41: 1053

(杨长林, 杨根仓, 卢一平, 陈甲琪, 周尧和. 金属学报, 2005; 41: 1053)

[18] Li J F, Yang G C, Zhou Y H.  Acta Metall Sin, 1998; 34: 113

(李金富, 杨根仓, 周尧和. 金属学报, 1998; 34: 113)

[19] Wang Y G, Kuang H, Huang Q.  Chin J Univ Metrology, 2012; 23: 139

(王玉刚, 匡环, 黄其. 中国计量学院学报, 2012; 23: 139)

[20] Huang Y L, Yang F H, Liang G Y, Su J Y.  Chin J Lasers, 2003; 30: 449

(黄延禄, 杨福华, 梁工英, 苏俊义. 中国激光, 2003; 30: 449)

[21] Wang N, Cao C D, Wei B B.  Acta Metall Sin, 1998; 34: 824

(王楠, 曹崇德, 魏炳波. 金属学报, 1998; 34: 824)

[22] Pu J, Wang J F, Xiao J Z, Gan Z H, Yi H Y.  Chin J Nonferrous Met, 2003; 13: 835

(蒲健, 王敬丰, 肖建中, 甘章华, 易回阳. 中国有色金属学报, 2003; 13: 835)

[23] Wei B, Herlach D M, Feuerbacher B, Sommer F.  Acta Metall Mater, 1993; 41: 1801

[24] Xu Z, Yao S S.  Theories of Material Processing. Beijing: Science Press, 2003: 78

(徐洲, 姚寿山. 材料加工原理. 北京: 科学出版社, 2003: 78)

[25] Jackson K A, Hunt J D.  Trans Met Soc AIME, 1966; 236: 1129
[1] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[2] 于家英, 王华, 郑伟森, 何燕霖, 吴玉瑞, 李麟. 热浸镀锌高强汽车板界面组织对其拉伸断裂行为的影响[J]. 金属学报, 2020, 56(6): 863-873.
[3] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[4] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.
[5] 刘震鹏, 闫志巧, 陈峰, 王顺成, 龙莹, 吴益雄. 金刚石工具用Cu-10Sn-xNi合金的制备和性能表征[J]. 金属学报, 2020, 56(5): 760-768.
[6] 李根, 兰鹏, 张家泉. 基于Ce变质处理的TWIP钢凝固组织细化[J]. 金属学报, 2020, 56(5): 704-714.
[7] 李秀程,孙明煜,赵靖霄,王学林,尚成嘉. 铁素体-贝氏体/马氏体双相钢中界面的定量化晶体学表征[J]. 金属学报, 2020, 56(4): 653-660.
[8] 任忠鸣,雷作胜,李传军,玄伟东,钟云波,李喜. 电磁冶金技术研究新进展[J]. 金属学报, 2020, 56(4): 583-600.
[9] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[10] 钱月,孙蓉蓉,张文怀,姚美意,张金龙,周邦新,仇云龙,杨健,成国光,董建新. NbFe22Cr5Al3Mo合金显微组织和耐腐蚀性能的影响[J]. 金属学报, 2020, 56(3): 321-332.
[11] 曹育菡,王理林,吴庆峰,何峰,张忠明,王志军. CoCrFeNiMo0.2高熵合金的不完全再结晶组织与力学性能[J]. 金属学报, 2020, 56(3): 333-339.
[12] 王桂芹,王琴,车宏龙,李亚军,雷明凯. Si对铸造超高铬高碳双相钢组织及性能的影响[J]. 金属学报, 2020, 56(3): 278-290.
[13] 邓聪坤,江鸿翔,赵九洲,何杰,赵雷. Ag-Ni偏晶合金凝固过程研究[J]. 金属学报, 2020, 56(2): 212-220.
[14] 王涛,万志鹏,李钊,李佩桓,李鑫旭,韦康,张勇. 热处理工艺对GH4720Li合金细晶铸锭组织与热加工性能的影响[J]. 金属学报, 2020, 56(2): 182-192.
[15] 肖宏,许朋朋,祁梓宸,吴宗河,赵云鹏. 感应加热异温轧制制备钢/铝复合板[J]. 金属学报, 2020, 56(2): 231-239.