Please wait a minute...
金属学报  2010, Vol. 46 Issue (8): 979-983    DOI: 10.3724/SP.J.1037.2010.00067
  论文 本期目录 | 过刊浏览 |
Bi2O3涂覆Al18B4O33晶须增强铝基复合材料的阻尼性能
刘刚1,  孙雅丽2, 胡津1, 周科1
1. 哈尔滨工业大学材料科学与工程学院, 哈尔滨 150001
2. 烟台工程职业技术学院机制工艺系, 烟台 264006
DAMPING CAPACITY OF Bi2O3–COATED Al18B4O33 WHISKER REINFORCED Al MATRIX COMPOSITES
LIU Gang 1, SUN Yali 2, HU Jin 1, ZHOU Ke 1
1. School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001
2. Department of Mechanical Technology, Yantai Engineering & Technology College, Yantai 264006
引用本文:

刘刚 孙雅丽 胡津 周科. Bi2O3涂覆Al18B4O33晶须增强铝基复合材料的阻尼性能[J]. 金属学报, 2010, 46(8): 979-983.
, , , . DAMPING CAPACITY OF Bi2O3–COATED Al18B4O33 WHISKER REINFORCED Al MATRIX COMPOSITES[J]. Acta Metall Sin, 2010, 46(8): 979-983.

全文: PDF(4825 KB)  
摘要: 

采用挤压铸造方法制备了Bi2O3涂覆Al18B4O33晶须增强的铝基复合材料. 探讨了Bi2O3含量、应变振幅、温度以及频率对涂覆复合材料阻尼性能的影响. 并对涂覆后复合材料的阻尼机制作了初步的探讨.研究发现, 涂覆复合材料在80和285℃附近存在2个明显的阻尼峰. 涂覆复合材料的阻尼性能不仅强烈依赖于晶须表面涂覆物的含量, 而且依赖于应变振幅. 高温阻尼峰P2随涂覆物含量及应变振幅增加而提高的幅度更大. 低温阻尼峰P1在涂覆复合材料中的阻尼机制归因于位错运动及由Bi引起的界面滑移. 阻尼峰P2随应变振幅的增加阻尼机制由界面滑移机制向界面滑移与Al晶界滑移混合机制转变.

关键词 铝基复合材料 Al18B4O33晶须 Bi2O3涂层 界面 阻尼性能    
Abstract

In metal matrix composites (MMCs), the reinforcement/matrix interface has a profound effect on its overall properties. The proper selection or design of the interfacial phase plays a vital role in optimizing the final properties of MMCs, in which high damping capacity is one of the most important properties of materials used in engineering structure. Although the damping mechanism of discontinuously reinforced aluminum composites has been extensively studied, only a few of researches have been reported on the effect of whisker coatings on the damping capacity of MMCs. In this paper, the pure aluminum matrix composites reinforced by alumina borate (Al18B4O33) whisker with and without Bi2O3 coatings were separately fabricated by squeeze and the volume fraction of Al18B4O33 whisker in these composites is about 20%. The mass ratios between Al18B4O33 whisker and Bi2O3 were set as 6∶1, 10∶1 and 20∶1, respectively. The effects of coating contents and strain amplitudes on the damping properties of the coated composites at various temperatures and frequencies were examined. Two damping peaks (P1 and P2) in the coated composites at around 80 and 285 ℃ were observed. The results of damping characterization indicate that the damping capacity of the coated composites strongly depends on the content of coatings and strain amplitudes. Moreover, P2 increases more rapidly with increasing the coating content and strain amplitude. P1 is related to dislocation motion and interfacial slip between the whisker and Bi phase. The damping mechanism of P2 changes with the increase of stain amplitude.

Key wordsAl matrix composite material     Al18B4O33     whisker    Bi2O3 coating    interface damping capacity
收稿日期: 2010-02-02     
作者简介: 刘刚, 男, 1980年生, 博士生
[1] Deo N and Vakil S, Scr. Mater, 1999; 40: 791 [2] Starink M J, Wang P, Sinclair I and Gregson P J, Acta Mater, 1999; 47: 3841 [3] Arsenault R J and Shi N, Mater. Sci. Eng, 1986; A 81: 175 [4] Gu J H, Zhang X N and Gu M Y, J. Alloy. Compd, 2004; 381: 182 [5] Parrina L and Schaller R, Acta Mater, 1996; 44: 4881 [6] Carreno-morelli E, Urreta S E and Schaller R, Acta Mater, 2000; 48: 4725 [7] Zhang X Q, Wang H W, Liao L H and Ma N H, Compos. Sci. Technol, 2007; 67: 720 [8] Gu J H, Zhang X N and Gu M Y, Mater. Lett, 2005; 59: 180 [9] Gu J H, Zhang X N, Qiu Y F and Gu M Y, Compos. Sci. Technol, 2005; 65: 1736 [10] Zhang X N, Wu R J,Li X C, Guo Z X, Science in China (Series E: Technological Sciences) 2002; 32: 14-19 (张小农,吴人洁,李小璀, Z X Guo, 中国科学(E 辑),2002; 32:14-19). [11] Gu J H, Zhang X N, Gu M Y, Journal of Aeronautical Materials, 2004; 24(6): 29-33. (顾金海,张小农,顾明元, 航空材料学报, 2004; 24(6): 29-33) [12] Hu J, Wang X F, Comp Sci Tech, 2008; 68: 2297-2299. [13]Liu G, Ren W C, Hu J, Mater Sci Eng A, 2010 under reviewer [14] Hu J, Wang X F and Zheng Z Z, J Appl Phys, 2010 in press [15] Zhang J M, Perez R J, Wong C R and Lavernia E J, Mater. Sci. Eng, 1994; R13: 325
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[3] 王福容, 张永梅, 柏国宁, 郭庆伟, 赵宇宏. Al掺杂Mg/Mg2Sn合金界面的第一性原理计算[J]. 金属学报, 2023, 59(6): 812-820.
[4] 马宗义, 肖伯律, 张峻凡, 朱士泽, 王东. 航天装备牵引下的铝基复合材料研究进展与展望[J]. 金属学报, 2023, 59(4): 457-466.
[5] 李谦, 孙璇, 罗群, 刘斌, 吴成章, 潘复生. 镁基材料中储氢相及其界面与储氢性能的调控[J]. 金属学报, 2023, 59(3): 349-370.
[6] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[7] 周小宾, 赵占山, 汪万行, 徐建国, 岳强. 渣-金界面气泡夹带行为数值物理模拟[J]. 金属学报, 2023, 59(11): 1523-1532.
[8] 沈莹莹, 张国兴, 贾清, 王玉敏, 崔玉友, 杨锐. SiCf/TiAl复合材料界面反应及热稳定性[J]. 金属学报, 2022, 58(9): 1150-1158.
[9] 宋庆忠, 潜坤, 舒磊, 陈波, 马颖澈, 刘奎. 镍基高温合金K417G与氧化物耐火材料的界面反应[J]. 金属学报, 2022, 58(7): 868-882.
[10] 郑士建, 闫哲, 孔祥飞, 张瑞丰. 纳米金属层状材料强塑性的界面调控[J]. 金属学报, 2022, 58(6): 709-725.
[11] 丁宗业, 胡侨丹, 卢温泉, 李建国. 基于同步辐射X射线成像液/固复层界面氢气泡的形核、生长演变与运动行为的原位研究[J]. 金属学报, 2022, 58(4): 567-580.
[12] 卢磊, 赵怀智. 异质纳米结构金属强化韧化机理研究进展[J]. 金属学报, 2022, 58(11): 1360-1370.
[13] 聂金凤, 伍玉立, 谢可伟, 刘相法. Al-AlN异构纳米复合材料的组织构型与热稳定性[J]. 金属学报, 2022, 58(11): 1497-1508.
[14] 王硕, 王俊升. Al-Li合金中 δ′/θ′/δ复合沉淀相结构演化及稳定性的第一性原理探究[J]. 金属学报, 2022, 58(10): 1325-1333.
[15] 赵宇宏, 景舰辉, 陈利文, 徐芳泓, 侯华. 装甲防护陶瓷-金属叠层复合材料界面研究进展[J]. 金属学报, 2021, 57(9): 1107-1125.