Please wait a minute...
金属学报  2010, Vol. 46 Issue (10): 1223-1229    DOI: 10.3724/SP.J.1037.2010.00308
  论文 本期目录 | 过刊浏览 |
温度梯度对定向凝固TiAl基合金片层取向的影响
肖志霞,郑立静,杨莉莉,闫洁,张虎
北京航空航天大学材料科学与工程学院空天材料与服役教育部重点实验室, 北京 100191
EFFECTS OF TEMPERATURE GRADIENT ON LAMEL-LAR ORIENTATIONS OF DIRECTIONAL SOLIDIFIED TiAl–BASED ALLOY
XIAO Zhixia, ZHENG Lijing, YANG Lili, YAN Jie, ZHANG Hu
Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and
Engineering, Beihang University, Beijing, 100191
引用本文:

肖志霞 郑立静 杨莉莉 闫洁 张虎. 温度梯度对定向凝固TiAl基合金片层取向的影响[J]. 金属学报, 2010, 46(10): 1223-1229.
, , , , . EFFECTS OF TEMPERATURE GRADIENT ON LAMEL-LAR ORIENTATIONS OF DIRECTIONAL SOLIDIFIED TiAl–BASED ALLOY[J]. Acta Metall Sin, 2010, 46(10): 1223-1229.

全文: PDF(2362 KB)  
摘要: 利用定向凝固方法研究了在1580和1650℃加热温度下Ti-47Al-2Cr-2Nb合金不同片层取向的晶粒竞争生长规律. 显微组织分析表明, 合金初生相为β相,随后发生包晶反应形成α相, 并在β→α转变时α相依附已有β相形核, 12种α变体中仅形成了一种特定取向的α变体,两相区平均温度梯度由40 K/cm增大至160 K/cm, 从而使凝固界面形态由柱状树枝晶转变为胞状树枝晶. 在排除切割面影响的前提下, 对γ片层取向的演变过程进行了分析. 结果表明, 在1 mm/min的抽拉速度下, 温度梯度为40 K/cm(加热温度为1580 ℃) 时, 与生长方向呈74°左右的柱状晶逐渐淘汰其他与生长方向约呈45°的晶粒; 提高温度梯度至160 K/cm (加热温度为1650 ℃) 时, 与生长方向呈74°左右的柱状晶逐步淘汰其他与生长方向约呈90°的晶粒而生长占优. 晶体取向计算表明, 在本实验条件下β枝晶倾向于沿<110>β方向择优生长, 提高温度梯度 使β枝晶沿<110>β方向择优生长趋势增强, <001>β等其他取向枝晶被更快淘汰.
关键词 TiAl基合金 定向凝固 片层取向 择优生长    
Abstract:Directional solidification experiments under heating temperatures of 1580℃ and 1650℃ were performed on Ti–47Al–2Cr–2Nb alloy in order to obtain the evolution of lamellar grains. From microstructural analysis in the mushy zone of directional solidified ingots, β phase was firstly solidified, then α phase was formed through peritectic reaction; α phase depended on the pre–existed β phase on which it nucleated, and only one of the 12 α orientation variants was selected during solid state β→ α transformations. As the average temperature gradient of the mushy zone was increased from 40 K/cm to 160 K/cm, the solidification interface morphologies were changed from columnar dendrite to celluar dendrite. Eliminating the influence of cutting plane to the γ–lamella orientation, it was shown that the columnar lamellar grains with an angle of approximately 74? to growth direction gradually overgrew the ones with the angle of nearly 45? to the growth direction at the withdrawal rate of 1 mm/min and temperature gradient of 40 K/cm. Increasing temperature gradient to 160 K/cm, the grains with the angle of about 74? progressively rejected other with the angle of nearly 90? to the growth direction. Calculation of the β dendrite preferred growth orientation indicated that  β dendrites tend to grow along the <110>β orientation at the present solidification experiments. Increasing temperature gradient, the preferred growth tendency of dendrite became more drastically, other orientations, such as the <001>β directional orientation, could rapidly be replaced.
Key wordsTiAl–based alloy    directional solidification    lamellar orientation    preferred growth
收稿日期: 2010-06-28     
ZTFLH: 

TG132.32

 
[1] Yamaguchi M, Inui H, Ito K. Acta mater, 2000; 48(1): 307 [2] Dimiduk D M. Mater Sci Eng A, 1999; 263(2): 281 [3] Kim Y W. JOM, 1995, 47(7): 39 [4] Yamaguchi M, Johnson D R, Lee H N, Inui H. Intermetallics, 2000; 8: 511 [5] Kishida K, Johnson D R, Masuda Y, Umeda H, Inui H, Yamaguchi M. Intermetallics, 1998; 6: 679 [6] Johnson D R., Inui H, Muto S, Omiya Y, Yamanaka T. Acta Mater, 2006; 54(4): 1077 [7] Lee H N, Johnson D R, Inui H, Oh M H, Wee D M, Yamaguchi M. Mater Sci Eng A, 2002; 329-331: 19 [8] Takeyama M, Yamamoto Y, Morishima H, Koike K, Chang S Y, Matsuo T. Mater Sci Eng A, 2002; 329-331: 7 [9] Lee H N, Johnson D R, Inui H, Oh M H, Wee D M, Yamaguchi M. Acta Mater, 2000; 48(12): 3221 [10] Jung I S, Oh M H, Park N J, Kumar K S, Wee D M. Met Mater Int, 2007; 13(6): 455 [11] Jung I S, Jang H S, Oh M H, Lee J H, Wee D M. Acta Mater, 2002; 329-331: 13 [12] Kim M C, Oh M H, Lee J H, Inui H, Yamaguchi M, Wee D M. Mater Sci Eng A, 1997; 239-240: 570 [13] Saari H, Beddoes J, Seo D Y, Zhao L. Intermetallics, 2005; 13(9): 937 [14] Sastry S M L, Lipsitt H A. Metall Trans A, 1977; 8(2): 299 [15] Pan J S, Tong J M, Tian M B. Fundamentals of Materials Science. 3rd ed. Beijing: Tsinghua University Press, 2002: 40 (潘金生, 仝健民, 田民波. 材料科学基础. 第3版. 北京: 清华大学出版社, 2002: 40) [16] Singh A K, Muraleedharan K, Banerjee D. Scripta Mater, 2003; 48: 767 [17] Henry S, Jarry P, Rappaz M. Metall Trans A, 1998; 29: 2807 [18] Henry S, Jarry P, Rappza M. Metall Trans A, 1997; 28: 207 [19] Henry S, Minghetti T, Rappaz M. Acta Mater, 1998; 46(18): 6431 [20] Hu H Q. the Principle of Metal Solidification. 2nd ed. Beijing: China Machine Press, 2000: 119 (胡汉起. 金属凝固原理. 第2版. 北京: 机械工业出版社, 2000: 119) [21] Jiang C B, Zhou S Z, Zhang M C, Wang R, Acta Metall Sin, 1998; 34(2):164 (蒋成保, 周寿增, 张茂才, 王润. 金属学报, 1998: 34(2): 164)
[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[3] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[4] 苏震奇, 张丛江, 袁笑坦, 胡兴金, 芦可可, 任维丽, 丁彪, 郑天祥, 沈喆, 钟云波, 王晖, 王秋良. 纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化[J]. 金属学报, 2023, 59(12): 1568-1580.
[5] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[6] 陈瑞润, 陈德志, 王琪, 王墅, 周哲丞, 丁宏升, 傅恒志. Nb-Si基超高温合金及其定向凝固工艺的研究进展[J]. 金属学报, 2021, 57(9): 1141-1154.
[7] 张小丽, 冯丽, 杨彦红, 周亦胄, 刘贵群. 二次枝晶取向对镍基高温合金晶粒竞争生长行为的影响[J]. 金属学报, 2020, 56(7): 969-978.
[8] 许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.
[9] 张健,王莉,王栋,谢光,卢玉章,申健,楼琅洪. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55(9): 1077-1094.
[10] 陈占兴,丁宏升,陈瑞润,郭景杰,傅恒志. 脉冲电流作用下TiAl合金凝固组织演变及形成机理[J]. 金属学报, 2019, 55(5): 611-618.
[11] 吉宗威,卢松,于慧,胡青苗,Vitos Levente,杨锐. 第一性原理研究反位缺陷对TiAl基合金力学行为的影响[J]. 金属学报, 2019, 55(5): 673-682.
[12] 方辉,薛桦,汤倩玉,张庆宇,潘诗琰,朱鸣芳. 定向凝固糊状区枝晶粗化和二次臂迁移的实验和模拟[J]. 金属学报, 2019, 55(5): 664-672.
[13] 唐文书,肖俊峰,李永君,张炯,高斯峰,南晴. 再热恢复处理对蠕变损伤定向凝固高温合金γ′相的影响[J]. 金属学报, 2019, 55(5): 601-610.
[14] 杨燕, 杨光昱, 罗时峰, 肖磊, 介万奇. Mg-14.61Gd合金的定向凝固组织及生长取向[J]. 金属学报, 2019, 55(2): 202-212.
[15] 金浩, 贾清, 刘荣华, 线全刚, 崔玉友, 徐东生, 杨锐. 籽晶制备及Ti-47Al合金PST晶体取向控制[J]. 金属学报, 2019, 55(12): 1519-1526.