Please wait a minute...
金属学报  2010, Vol. 46 Issue (1): 27-33    
  论文 本期目录 | 过刊浏览 |
转模等通道转角挤压路径对AZ31镁合金组织和力学性能的影响
严凯1;孙扬善1;2;白晶1;2;薛烽1;2
1) 东南大学材料科学与工程学院; 南京 211189
2) 江苏省先进金属材料高技术研究重点实验室; 南京 211189
EFFECTS OF ROTARY-DIE ECAP ROUTES ON MICROSTRUCTURE AND MECHANICAL PROPERTY OF AZ31 MAGNESIUM ALLOY
YAN Kai 1; SUN Yangshan 1;2;  BAI Jing 1;2;  XUE Feng1;2
1) College of Materials Science and Engineering; Southeast University; Nanjing 211189
2) Jiangsu Key Lab of Advanced Metallic Materials; Nanjing 211189
引用本文:

严凯 孙扬善 白晶 薛烽. 转模等通道转角挤压路径对AZ31镁合金组织和力学性能的影响[J]. 金属学报, 2010, 46(1): 27-33.
YAN Kai SUN Yangshan BAI Jing XUE Feng. EFFECTS OF ROTARY-DIE ECAP ROUTES ON MICROSTRUCTURE AND MECHANICAL PROPERTY OF AZ31 MAGNESIUM ALLOY[J]. Acta Metall Sin, 2010, 46(1): 27-33.

全文: PDF(1364 KB)  
摘要: 

利用3D转模等通道转角挤压(3D-RD ECAP)设备, 对AZ31镁合金进行了A', BA', BC'与C' 4种路径的ECAP实验. 对试样的显微组织观察显示, 经4种路径挤压后合金显微组织都明显细化, 但不同路径对微观组织和力学性能的影响不同. 经A' 和BA'路径挤压的试样组织中晶粒尺寸和硬度分布比其它两种路径挤压的试样更均匀, 且显示出更高的塑性. 通过对各种路径挤压过程中试样内部立方单元的变形分析, 揭示了传统的剪切模型理论的不足. 利用有限元方法模拟了试样ECAP的形变过程, 证实材料在变形过程中各部位受力差异很大. ECAP对试样变形的均匀性主要取决于拉/压应力交替作用于试样各个部位的顺序, 而与传统剪切模型中的立方单元变形规律没有直接关系.

关键词 镁合金等通道转角挤压转模挤压路径组织均匀性晶粒细化    
Abstract

Using a 3D rotary-die equal-channel angular pressing (3D-RD ECAP) mold, the commercial wrought magnesium alloy AZ31 has been processed through 4 routes(A', BA', BC' and C') and microstructures as well as mechanical properties of the samples processed were investigated. The results reveal that all the 4 routes can refine microstructures of the alloy, however, the effects on microstructural homogeneity and tensile elongations of the samples are different. The grain sizes of the samples processed through routes A' or BA' are more uniform and their tensile elongations at ambient temperature are also higher than those through BC' or C' routes. The distributions of hardness on the central longitudinal planes of samples extruded through different routes are well consistent with the microstructural characters at the corresponding positions. Strain analysis on the cubic elements in the samples reveals the limitation of the traditional shear mode for ECAP. Based on experimental results and finite element method (FEM) simulation, the deformation homogeneity caused by ECAP processing is closely related to the alternative action of tensile and compressive stresses at the different positions in the samples and is independent of the deformation regularity of the cubic elements in the shear model proposed in the previous studies.

Key wordsmagnesium alloy    equal-channel angular pressing    rotary-die    pressing route    structure homogeneity    grain-refinement
收稿日期: 2009-06-30     
ZTFLH:  TG146.2  
基金资助:

国家科技支撑计划资助项目2006BAE04B07

作者简介: 严凯, 男, 1979年生, 博士生

[1] Miyahara Y, Horita Z, Langdon T G. Mater Sci Eng, 2006; A420: 240

[2] Chuvil’deev V N, Nieh T G, Gryaznov M Y, Kopylov V I, Sysoev A N. J Alloy Compd, 2004; 378: 253

[3] Mabuchi M, Iwasaki H, Yanase K. Higashi K. Scr Mater, 1997; 36: 681

[4] Figueiredo R B, Langdon T G. Mater Sci Eng, 2006; A430: 151

[5] Chuvil’deev V N, Kopylov V I, Gryaznov M Y, Sysoev A N. Dokl Phys, 2003; 48: 343

[6] Lapovok R, Thomson P F, Cottam R, Estrin Y. Mater Sci Eng, 2005; A410–411: 390

[7] Kim J C, Nishida Y, Arima H, Ando T. Mater Lett, 2003; 57: 1689

[8] Nishida Y, Arima H, Kim J C, Ando T. Scr Mater, 2001; 45: 261

[9] Yamashita A, Horita Z, Langdon T G. Mater Sci Eng, 2001; A300: 142

[10] Matsubara K, Miyahara Y, Horita Z, Langdon T G. Acta Mater, 2003; 51: 3073

[11] Fatemi–Varzaneh S M, Zarei–Hanzaki A, Beladi H. Mater Sci Eng, 2007; A456: 52

[12] Li Y Y, Zhang D T, Chen W P, Liu Y, Guo G W. J Mater Sci, 2004; 39: 3759

[13] Chino Y, Kimura K, Hakamada M, Mabuchi M. Mater Sci Eng, 2008; A485: 311

[14] Jiang L, Jonas J J. Scr Mater, 2008; 58: 803

[15] Lee B H, Reddya N S, Yeoma J T, Lee C S. J Mater Process Technol, 2007; 187–188: 766

[16] Figueiredo R B, Aguilar M T P, Cetlin P R. Mater Sci Eng, 2006; A430: 179

[17] Chen Z H. Wrought Magnesium Alloys. Beijing: Chemical Industry Press, 2005: 28

(陈振华. 变形镁合金. 北京: 化学工业出版社,2005: 28)

[18] Kim W J, Hong S I, Kim Y S, Min S H, Jeong H T, Lee J D. Acta Mater, 2003; 51: 3293

[19] Beyerlein I J, T´oth L S. Prog Mater Sci, 2009; 54: 427

[20] Valiev R Z, Islamgaliev R K, Alexandrov I V. Prog Mater Sci, 2000; 45: 103

[21] Iwahashi Y, Horita Z, Nemoto M, Langdon T G. Acta Mater, 1998; 46: 3317

[22] Langdon T G, Furukawa M, Nemoto M, Horita Z. JOM, 2000; 52(4): 30

[23] Valiev R Z, Langdon T G. Prog Mater Sci, 2006; 51: 881

[24] Chino Y, Kimura K, Mabuchi M. Mater Sci Eng, 2008; A486: 481

[1] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[2] 邵晓宏, 彭珍珍, 靳千千, 马秀良. 镁合金LPSO/SFs结构间{101¯2}孪晶交汇机制的原子尺度研究[J]. 金属学报, 2023, 59(4): 556-566.
[3] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[4] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[5] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[6] 李小兵, 潜坤, 舒磊, 张孟殊, 张金虎, 陈波, 刘奎. W含量对Ti-42Al-5Mn-xW合金相转变行为的影响[J]. 金属学报, 2023, 59(10): 1401-1410.
[7] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[8] 陈扬, 毛萍莉, 刘正, 王志, 曹耕晟. 高速冲击载荷下预压缩AZ31镁合金的退孪生行为与动态力学性能[J]. 金属学报, 2022, 58(5): 660-672.
[9] 吴国华, 童鑫, 蒋锐, 丁文江. 铸造Mg-RE合金晶粒细化行为研究现状与展望[J]. 金属学报, 2022, 58(4): 385-399.
[10] 曾小勤, 王杰, 应韬, 丁文江. 镁及其合金导热研究进展[J]. 金属学报, 2022, 58(4): 400-411.
[11] 罗旋, 韩芳, 黄天林, 吴桂林, 黄晓旭. 层状异构Mg-3Gd合金的微观组织和力学性能[J]. 金属学报, 2022, 58(11): 1489-1496.
[12] 李少杰, 金剑锋, 宋宇豪, 王明涛, 唐帅, 宗亚平, 秦高梧. “工艺-组织-性能”模拟研究Mg-Gd-Y合金混晶组织[J]. 金属学报, 2022, 58(1): 114-128.
[13] 丁宁, 王云峰, 刘轲, 朱训明, 李淑波, 杜文博. 高应变速率多向锻造Mg-8Gd-1Er-0.5Zr合金的微观组织、织构及力学性能[J]. 金属学报, 2021, 57(8): 1000-1008.
[14] 王慧远, 夏楠, 布如宇, 王珵, 查敏, 杨治政. 低合金化高性能变形镁合金研究现状及展望[J]. 金属学报, 2021, 57(11): 1429-1437.
[15] 潘复生, 蒋斌. 镁合金塑性加工技术发展及应用[J]. 金属学报, 2021, 57(11): 1362-1379.