Please wait a minute...
金属学报  2009, Vol. 45 Issue (9): 1030-1034    
  论文 本期目录 | 过刊浏览 |
细晶Nb-16Si难熔合金的制备及其烧结-锻造短流程成形
王晓丽;王国峰;张凯锋
哈尔滨工业大学金属精密热加工国家级重点实验室; 哈尔滨 150001
FABRICATION OF FINE-GRAINED Nb-16Si REFRACTORY ALLOY AND ITS SINTER--FORGING WITH SHORT PROCESS
WANG Xiaoli; WANG Guofeng; ZHANG Kaifeng
National Key Laboratory for Precision Heat Processing of Metal; Harbin Institute of Technology; Harbin 150001
引用本文:

王晓丽 王国峰 张凯锋. 细晶Nb-16Si难熔合金的制备及其烧结-锻造短流程成形[J]. 金属学报, 2009, 45(9): 1030-1034.
, . FABRICATION OF FINE-GRAINED Nb-16Si REFRACTORY ALLOY AND ITS SINTER--FORGING WITH SHORT PROCESS[J]. Acta Metall Sin, 2009, 45(9): 1030-1034.

全文: PDF(1171 KB)  
摘要: 

以高纯Nb和Si粉末为原料, 通过机械球磨+真空热压烧结制备了高致密度的Nb-16Si难熔合金. 利用SEM和XRD分析了球磨后复合粉末的形貌变化以及热压烧结后材料的显微组织和相组成. 机械球磨后粉末颗粒获得细化, Si固溶于Nb形成间隙固溶体, 烧结后材料由铌基固溶体(Nbss), Nb5Si3, Nb3Si及少量高Si含量的铌基固溶体(NbssI)组成, 平均晶粒尺寸约为2 μm, 呈等轴状. 烧结材料呈现典型的穿晶断裂模式及韧性相增韧. 测定了材料的Vickers硬度及各相的纳米硬度, 利用单边切口直通梁法(SENB)测定其室温断裂韧性. 利用烧结-锻造技术成形了Nb-16Si难熔合金推力室模拟件, 其微观组织与热压烧结材料相似, 力学性能较烧结材料有所降低, 与金属间化合物的大小有关.

关键词 Nb--16Si难熔合金机械球磨热压烧结-锻造    
Abstract

Nb--16Si refractory alloy was prepared by mechanical milling and hot--press sintering from high--purity Nb and Si powders. The milling process was carried out in a planetary ball mill for 24 h. The milled powders were consolidated by hot pressing in the argon atmosphere at 30 MPa and 1500 ℃ for 1 h. The powders ball--milled and material hot--pressed were characterized by XRD and SEM. The size of milled particles was refined and the Si atoms were dissolved into the Nb lattice to form interstitial solid solution. The results reveal that Nb--16Si refractory alloy consists of Nb solid solution (Nbss), Nb5Si3, Nb3Si and another Nb solid solution (NbssI) with high Si content. The average grain size is about 2 μm and the grains are nearly equiaxed. The predominant fracture mode is transgranular fracture with river patterns in Nbss and relatively flat cleavage planes in silicides. Nano-hardness values of Nb5Si3, Nb3Si and Nbss determined by nano--indentation are 13.9, 12.7 and 4 GPa, respectively. The fracture toughness of the alloy reaches 10.98 MPa?m1/2, indicating ductile phase toughening plays a positive role in improving the fracture toughness. A model of trust chamber was fabricated by sinter--forging and its microstructure is similar to the hot--pressed material.

Key wordsNb-16Si refractory alloy    mechanical milling    hot-press    sinter-forging
收稿日期: 2009-02-16     
ZTFLH: 

TG33

 
基金资助:

国家自然科学基金资助项目 50775052

作者简介: 王晓丽, 女, 1980年生, 博士生

[1] Subramanian P R, Mendiratta M G, Dimiduk D M. JOM, 1996; 48(1): 33
[2] Vasud´evan A K, Petrovic J J. Mater Sci Eng, 1992; A155: 1
[3] Mendiratta M G, Lewandowski J J, Dimiduk D M. Metall Trans, 1991; 22A: 1573
[4] Subramanian P R, Parthasarathy T A, Mendiratta M G, Dimiduk D M. Scr Metall, 1995; 32: 1227
[5] Chan K S. Metall Trans, 1996; 27A: 2518
[6] Kim W Y, Tanaka H, Kasama A, Tanaka R, Hanada S. Intermetallics, 2001; 9: 521
[7] Jackson M R, Bewlay B P, Rowe R G, Skelly D W, Lipsitt H A. JOM, 1996; 48(1): 39
[8] Qu S Y, Wang R M, Han Y F. Trans Nonferrous Met Soc Chin, 2002; 12: 691
[9] Kim W Y, Tanaka H, Kasama A, Hanada S. Intermetallics, 2001; 9: 827
[10] Yeh C L, Chen W H. J Alloys Compd, 2006; 425: 216
[11] Yu J L, Zhang K F, Yu J, Wang G F. Acta Metall Sin, 2008; 8: 933
(喻吉良, 张凯锋, 于 杰, 王国峰. 金属学报, 2008; 8: 933)
[12] Yu J L, Zhang K F. Scr Mater, 2008; 59: 714
[13] Ma C L, Kasama A, Tanaka R, Hanada S, Kang M K. Trans Met Heat Treat, 2000; 21(2): 83
(马朝利, 笠间昭夫, 田中良平, 花田修治, 康沫狂. 金属热处理学报, 2000; 21(2): 83)

[14] Zhang D Y, Xiao L Z. Rare Metal Mater Eng, 1985; 15(5): 8
(张德尧, 肖联贞. 稀有金属材料与工程, 1985; 15(5): 8)

[15] Zhang D Y, Xiao L Z. Rare Metal Mater Eng, 1986; 16(1): 10
(张德尧, 肖联贞. 稀有金属材料与工程, 1986; 16(1): 10)

[16] Sutradhar G, Jha A K, Kumar S. J Mater Process Technol, 1994; 41: 143
[17] Park J O, Kim K J, Kang D Y, Lee Y S, Kim Y H. J Mater Process Technol, 2001; 113: 486

[1] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[2] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[3] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[4] 刘庆琦, 卢晔, 张翼飞, 范笑锋, 李瑞, 刘兴硕, 佟雪, 于鹏飞, 李工. Al19.3Co15Cr15Ni50.7高熵合金的热变形行为[J]. 金属学报, 2021, 57(10): 1299-1308.
[5] 赵嫚嫚, 秦森, 冯捷, 代永娟, 国栋. AlNi1Cr9Al(1~3)Ni(1~7)WVNbB钢热变形行为的影响[J]. 金属学报, 2020, 56(7): 960-968.
[6] 张乐,王威,M. Babar Shahzad,单以银,杨柯. 新型多层金属复合材料的制备与性能[J]. 金属学报, 2020, 56(3): 351-360.
[7] 周丽,张鹏飞,王全兆,肖伯律,马宗义,于涛. B4C/6061Al复合材料热压缩断裂行为的多尺度研究[J]. 金属学报, 2019, 55(7): 911-918.
[8] 万志鹏, 王涛, 孙宇, 胡连喜, 李钊, 李佩桓, 张勇. GH4720Li合金热变形过程动态软化机制[J]. 金属学报, 2019, 55(2): 213-222.
[9] 游晓红,王刚刚,王军,许涛,张洪宇,韦华. 固溶处理对热压CoCrW合金组织及力学性能的影响*[J]. 金属学报, 2016, 52(2): 161-167.
[10] 孔凡涛,崔宁,陈玉勇,熊宁宁. Ti-43Al-9V-Y合金的高温变形行为研究[J]. 金属学报, 2013, 49(11): 1363-1368.
[11] 孙朝阳 栾京东 刘赓 李瑞 张清东. AZ31镁合金热变形流动应力预测模型[J]. 金属学报, 2012, 48(7): 853-860.
[12] 金鹏 肖伯律 王全兆 马宗义 刘越 李曙. 热压烧结温度对SiC颗粒增强铝基复合材料微观组织及力学性能的影响[J]. 金属学报, 2011, 47(3): 298-304.
[13] 孙朝阳 刘金榕 李瑞 张清东. Incoloy 800H高温变形流动应力预测模型[J]. 金属学报, 2011, 47(2): 191-196.
[14] 童剑 黄华 袁广银 丁文江. 准晶增强的Mg-Zn-Al-(Y)合金热压缩变形行为[J]. 金属学报, 2011, 47(12): 1520-1526.
[15] 王健; 肖宏; 张志国 . 流变应力逆分析确定静态再结晶动力学模型[J]. 金属学报, 2008, 44(7): 837-842 .