Please wait a minute...
金属学报  2019, Vol. 55 Issue (7): 911-918    DOI: 10.11900/0412.1961.2018.00453
  本期目录 | 过刊浏览 |
B4C/6061Al复合材料热压缩断裂行为的多尺度研究
周丽1,张鹏飞1,王全兆2(),肖伯律2,马宗义2,于涛1
1. 烟台大学机电汽车工程学院 烟台 264005
2. 中国科学院金属研究所沈阳材料科学国家研究中心 沈阳 110016
Multi-Scale Study on the Fracture Behavior of Hot Compression B4C/6061Al Composite
Li ZHOU1,Pengfei ZHANG1,Quanzhao WANG2(),Bolü XIAO2,Zongyi MA2,Tao YU1
1. School of Electromechanical and Vehicle Engineering, Yantai University, Yantai 264005, China
2. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(17474 KB)   HTML
摘要: 

运用实验和模拟仿真相结合的方法研究了B4C/6061Al复合材料的热压缩断裂行为,确定了损伤模型及损伤参数。建立了单向多尺度有限元模型,分析了B4C/6061Al复合材料的细观损伤机理。结果表明,由于B4C/6061Al复合材料内部不均匀的细观结构,剪切损伤模型不能预测其断裂行为,而GTN损伤模型能准确预测B4C/6061Al复合材料的热压缩断裂行为。通过与实验结果的比较,确定了31%B4C/6061Al (质量分数)复合材料的GTN模型损伤参数,从而使模拟和实验获得的裂纹深度和载荷-位移曲线高度一致。此外,利用单向多尺度有限元法准确地分析了B4C/6061Al复合材料热压缩过程的细观损伤机理,即热压缩过程中出现的宏观裂纹是由颗粒的脆性断裂、基体和界面的脱黏以及基体的延性损伤导致的。

关键词 B4C/6061Al复合材料热压缩多尺度法断裂    
Abstract

B4C/Al composites possess excellent physical and mechanical properties, especially the capacity of neutron absorption, and therefore are increasingly used in nuclear industry for storage and transportation of spent fuels. However, very little study has reported the fracture behavior of B4C/Al composite under hot compression. Therefore, at the present work, the hot compression fracture behavior of B4C/6061Al composite was studied by combining experimental and simulation methods, and the fracture model and damage parameters were determined. A unidirectional multi-scale finite element model was established to analyze the meso damage mechanism of B4C/6061Al composite. The results show that the shear damage model cannot predict the fracture behavior of B4C/6061Al composite because of the inhomogeneous microstructure, and the GTN damage model can accurately predict the hot compression fracture behavior of B4C/6061Al composite. At the same time, by comparing with the experimental results, the GTN damage parameters of 31%B4C/6061Al composite were determined, and then by applying the damage parameters, the calculated crack depth and load-displacement curves agree well with the experimental results. In addition, the micro-damage mechanism of B4C/6061Al composite during hot compression process was analyzed accurately with the unidirectional multi-scale finite element method, which was caused by brittle fracture of particles, debonding between matrix and interface, and ductile damage of matrix.

Key wordsB4C/6061Al composite    hot compression    multi-scale method    fracture
收稿日期: 2018-09-27     
ZTFLH:  TG339  
基金资助:国家重点研发计划项目(No.2017YFB0703104);国家自然科学基金项目(Nos.U1508216);国家自然科学基金项目(51771194);山东省自然科学基金项目(No.ZR2019MEE074)
通讯作者: 王全兆     E-mail: qzhwang@imr.ac.cn
Corresponding author: Quanzhao WANG     E-mail: qzhwang@imr.ac.cn
作者简介: 周 丽,女,1971年生,教授,博士

引用本文:

周丽,张鹏飞,王全兆,肖伯律,马宗义,于涛. B4C/6061Al复合材料热压缩断裂行为的多尺度研究[J]. 金属学报, 2019, 55(7): 911-918.
Li ZHOU, Pengfei ZHANG, Quanzhao WANG, Bolü XIAO, Zongyi MA, Tao YU. Multi-Scale Study on the Fracture Behavior of Hot Compression B4C/6061Al Composite. Acta Metall Sin, 2019, 55(7): 911-918.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2018.00453      或      https://www.ams.org.cn/CN/Y2019/V55/I7/911

图1  31%B4C/6061Al 复合材料的初始显微组织的OM像
图2  热压缩有限元模型
Thermo-physical parameterValueUnit
Young's modulus (E)136GPa
Shear modulus of elasticity (G)52.3GPa
Specific heat (cp)1.381J·g?1·K?1
Thermal diffusivity31.42m2·s?1
Coefficient of thermal expansion (φ)16.9×10?6K?1
Poisson's ratio (μ)0.3
Density (ρ)2.64g·m?3
表1  31%B4C/6061Al复合材料热物理性能
图3  应变率10 s-1、压下量为75%时,31%B4C/6061Al复合材料热压缩后不同温度下的裂纹形貌
图4  应变率10 s-1、压下量为27%时,由剪切损伤模型计算所得不同温度下31%B4C/6061Al复合材料的裂纹形貌
图5  应变率10 s-1时由GTN损伤模型计算所得不同温度下31%B4C/6061Al复合材料的裂纹形貌
图6  应变率为10 s-1时不同温度下GTN损伤模型计算与实验裂纹深度对比
图7  不同温度和应变率下GTN损伤模型与实验所得热压缩过程中载荷-位移曲线的比较
图8  有限元模拟中特征位置的选取
图9  31%B4C/6061Al复合材料二维细观有限元模型的建立
图10  随压缩时间的延长,细观模型中裂纹的形成过程
[1] Khakbiz M, Akhlaghi F. Synthesis and structural characterization of Al-B4C nano-composite powders by mechanical alloying [J]. J. Alloys Compd., 2009, 479: 334
[2] Trujillo-Vázquez E, Pech-Canul M I, Guía-Tello J C, et al. Surface chemistry modification for elimination of hydrophilic Al4C3 in B4C/Al composites [J]. Mater. Des., 2016, 89: 94
[3] Huang Y P, Liang L, Xu J, et al. The design study of a new nuclear protection material [J]. Nucl. Eng. Des., 2012, 248: 22
[4] Zhang P, Li Y L, Wang W X, et al. The design, fabrication and properties of B4C/Al neutron absorbers [J]. J. Nucl. Mater., 2013, 437: 350
[5] Wang Y W, Zhang W G, Tian Q D, et al. Mechanical properties of B4Cp/2024Al composites prepared by squeeze casting [J]. Spec. Cast. Nonferrous Alloys, 2008, (S1): 428
[5] (王扬卫, 张维官, 田擎东, 等. 挤压铸造B4Cp/2024Al复合材料力学性能研究 [J]. 特种铸造及有色合金, 2008, (年会专刊):428)
[6] Liu B, Huang W M, Wang H W, et al. Study on the load partition behaviors of high particle content B4C/Al composites in compression [J]. J. Compos. Mater., 2014, 48: 355
[7] Chen H S, Wang W X, Nie H H, et al. Microstructure evolution and mechanical properties of B4C/6061Al neutron absorber composite sheets fabricated by powder metallurgy [J]. J. Alloys Compd., 2018, 730: 342
[8] Xu Z G, Jiang L T, Zhang Q, et al. The microstructure and influence of hot extrusion on tensile properties of (Gd+B4C)/Al composite [J]. J. Alloys Compd., 2017, 729: 1234
[9] Wang K K, Li X P, Li Q L, et al. Hot deformation behavior and microstructural evolution of particulate-reinforced AA6061/B4C composite during compression at elevated temperature [J]. Mater. Sci. Eng., 2017, A696: 248
[10] Liu S P, Li D F, He J Y, et al. Constitutive analysis to predict high-temperature flow stress of 25vol% B4Cp/2009Al composite [J]. Rare Met. Mater. Eng., 2017, 46: 2831
[11] Zhou L, Cui C, Wang Q Z, et al. Constitutive equation and model validation for a 31 vol.% B4Cp/6061Al composite during hot compression [J]. J. Mater. Sci. Technol., 2018, 34: 1730
[12] He W, Qin Y B, Li Y L. Influence of different secondary processing methods on properties of B4C/aluminium composites [J]. Hot Working Technol., 2017, 46(16): 112
[12] (贺 玮, 秦艳兵, 李宇力. 不同的二次加工方法对B4C/Al复合材料性能的影响 [J]. 热加工工艺, 2017, 46(16): 112)
[13] Li D F, Liu S P, Guo S L. Critical conditions of dynamic recrystallization for B4Cp/2009Al composite [J]. J. Netshape Forming Eng., 2018, 10(2): 67
[13] (李德富, 刘生璞, 郭胜利. B4Cp/2009Al复合材料动态再结晶临界条件 [J]. 精密成形工程, 2018, 10(2): 67)
[14] Li T, Duan Y, Jin K H, et al. Dynamic compressive fracture of C/SiC composites at different temperatures: Microstructure and mechanism [J]. Int. J. Impact Eng., 2017, 109: 391
[15] Opelt C V, Candido G M, Rezende M C. Fractographic study of damage mechanisms in fiber reinforced polymer composites submitted to uniaxial compression [J]. Eng. Fail. Anal., 2018, 92: 520
[16] Jiao Z W, Zhou C W. Multi-scale mechanical analysis of tridimensional woven composite pipe [J]. Acta Mater. Compos. Sin., 2010, 27(5): 122
[16] (焦志文, 周储伟. 圆管状立体机织复合材料的多尺度分析 [J]. 复合材料学报, 2010, 27(5): 122)
[17] Woo K, Whitcomb J. Global/local finite element analysis for textile composites [J]. J. Compos. Mater., 1994, 28: 1305
[18] Zhang Z F, Qu R T, Liu Z Q. Advances in fracture behavior and strength theory of metallic glasses [J]. Acta Metall. Sin., 2016, 52: 1171
[18] (张哲峰, 屈瑞涛, 刘增乾. 金属玻璃的断裂行为与强度理论研究进展 [J]. 金属学报, 2016, 52: 1171)
[19] Lin Y Z, Fu G S, Cao R, et al. Compression damage and fracture behaviors of γ-TiAl based alloys [J]. Chin. J. Rare. Met., 2014, 38: 334
[19] (林有智, 傅高升, 曹 睿等. γ-TiAl基合金压缩损伤与断裂行为的研究 [J]. 稀有金属, 2014, 38: 334)
[20] Borhana A, Ali H O, Tamin M N. Large strain shear compression test of sheet metal specimens [J]. Exp. Mech., 2013, 53: 1449
[21] Guo X L, Li D J, Wang Y M, et al. Fracture behavior of Zr65Al7.5Ni10Cu17.5 bulk metallic glass under monaxial compression at room temperature [J]. Acta Metall. Sin., 2003, 39: 1089
[21] (郭秀丽, 李德俊, 王英敏等. 块状非晶态合金Zr65Al7.5Ni10Cu17.5的室温单轴压缩断裂行为 [J]. 金属学报, 2003, 39: 1089)
[22] Wang X M, Shi J. Validation of Johnson-Cook plasticity and damage model using impact experiment [J]. Int. J. Impact Eng., 2013, 60: 67
[23] Yan Y X, Sun Q, Chen J J, et al. The initiation and propagation of edge cracks of silicon steel during tandem cold rolling process based on the Gurson-Tvergaard-Needleman damage model [J]. J. Mater. Process. Technol., 2013, 213: 598
[24] Zhou L, Huang Z Y, Wang C Z, et al. Constitutive flow behaviour and finite element simulation of hot rolling of SiCp/2009Al composite [J]. Mech. Mater., 2016, 93: 32
[25] Hooputra H, Gese H, Dell H, et al. A comprehensive failure model for crashworthiness simulation of aluminium extrusions [J]. Int. J. Crashworth., 2004, 9: 449
[26] Gurson A L. Continuum theory of ductile rupture by void nucleation and growth: part I—Yield criteria and flow rules for porous ductile media [J]. J. Eng. Mater. Technol., 1977, 99: 2
[27] Needleman A, Tvergaard V. A numerical study of void distribution effects on dynamic, ductile crack growth [J]. Eng. Fract. Mech., 1991, 38: 157
[28] Li Y Z, Wang Q Z, Wang W G, et al. Effect of interfacial reaction on age-hardening ability of B4C/6061Al composites [J]. Mater. Sci. Eng., 2015, A620: 445
[29] Abendroth M, Kuna M. Determination of deformation and failure properties of ductile materials by means of the small punch test and neural networks [J]. Comput. Mater. Sci., 2003, 28: 633
[30] Benseddiq N, Imad A. A ductile fracture analysis using a local damage model [J]. Int. J. Press. Vessels Pip., 2008, 85: 219
[31] Yuan Z W, Li F G, Wang C W. Study on the hot workability of SiCp/Al composites based on a critical strain map [J] J. Mater. Eng. Perform., 2017, 26: 4197
[1] 杨杰, 王雷. 核电站DMWJ中材料拘束的影响与优化[J]. 金属学报, 2020, 56(6): 840-848.
[2] 于家英, 王华, 郑伟森, 何燕霖, 吴玉瑞, 李麟. 热浸镀锌高强汽车板界面组织对其拉伸断裂行为的影响[J]. 金属学报, 2020, 56(6): 863-873.
[3] 易红亮,常智渊,才贺龙,杜鹏举,杨达朋. 热冲压成形钢的强度与塑性及断裂应变[J]. 金属学报, 2020, 56(4): 429-443.
[4] 刘杨,王磊,宋秀,梁涛沙. DD407/IN718高温合金异质焊接接头的组织及高温变形行为[J]. 金属学报, 2019, 55(9): 1221-1230.
[5] 万志鹏, 王涛, 孙宇, 胡连喜, 李钊, 李佩桓, 张勇. GH4720Li合金热变形过程动态软化机制[J]. 金属学报, 2019, 55(2): 213-222.
[6] 李一哲, 龚宝明, 刘秀国, 王东坡, 邓彩艳. 面外拘束效应对单边缺口拉伸试样断裂韧性的影响[J]. 金属学报, 2018, 54(12): 1785-1791.
[7] 刘汉青, 何超, 黄志勇, 王清远. TC17合金超高周疲劳裂纹萌生机理[J]. 金属学报, 2017, 53(9): 1047-1054.
[8] 张海,李时磊,刘刚,王艳丽. 热加工对Z3CN20-09M双相不锈钢组织及热老化冲击断裂行为的影响[J]. 金属学报, 2017, 53(5): 531-538.
[9] 陈剑虹, 曹睿. 焊缝金属解理断裂微观机理[J]. 金属学报, 2017, 53(11): 1427-1444.
[10] 李安华, 张月明, 冯海波, 邹宁, 吕忠山, 邹旭杰, 李卫. 烧结Ce-Fe-B磁体的力学性能[J]. 金属学报, 2017, 53(11): 1478-1486.
[11] 李学达,尚成嘉,韩昌柴,范玉然,孙建波. X100管线钢焊接热影响区中链状M-A组元对冲击韧性和断裂机制的影响*[J]. 金属学报, 2016, 52(9): 1025-1035.
[12] 桂晓露,张宝祥,高古辉,赵平,白秉哲,翁宇庆. Q-P-T处理贝氏体/马氏体复相高强钢疲劳断裂特性研究*[J]. 金属学报, 2016, 52(9): 1036-1044.
[13] 冯祥利,王磊,刘杨. Q460钢焊接接头组织及动态断裂行为的研究*[J]. 金属学报, 2016, 52(7): 787-796.
[14] 谢君, 于金江, 孙晓峰, 金涛. K416B镍基铸造高温合金的700 ℃高周疲劳行为*[J]. 金属学报, 2016, 52(3): 257-263.
[15] 申造宇,何利民,黄光宏,牟仁德,顾金旺,刘维众. TiAl/Ti3Al超薄多层复合材料的微观结构与力学性能*[J]. 金属学报, 2016, 52(12): 1579-1585.