Please wait a minute...
金属学报  2013, Vol. 49 Issue (11): 1363-1368    DOI: 10.3724/SP.J.1037.2013.00513
  论文 本期目录 | 过刊浏览 |
Ti-43Al-9V-Y合金的高温变形行为研究
孔凡涛,崔宁,陈玉勇,熊宁宁
哈尔滨工业大学金属精密热加工国家级重点实验室, 哈尔滨 150001
THE HOT DEFORMATION BEHAVIOR OF Ti-43Al-9V-Y ALLOY
KONG Fantao, CUI Ning, CHEN Yuyong, XIONG Ningning
National Key Laboratory for Precision Hot Processing of Metals, HarbinInstitute of Technology, Harbin 150001
引用本文:

孔凡涛,崔宁,陈玉勇,熊宁宁. Ti-43Al-9V-Y合金的高温变形行为研究[J]. 金属学报, 2013, 49(11): 1363-1368.
KONG Fantao, CUI Ning, CHEN Yuyong, XIONG Ningning. THE HOT DEFORMATION BEHAVIOR OF Ti-43Al-9V-Y ALLOY[J]. Acta Metall Sin, 2013, 49(11): 1363-1368.

全文: PDF(1628 KB)  
摘要: 

采用Gleeble-1500D热压缩模拟试验机研究了铸态Ti-43Al-9V-Y合金在1100--1225℃,应变速率0.01-1.0 s-1条件下的高温变形行为. 根据测得的真应力-真应变曲线,基于动态材料模型(DMM)建立了Ti-43Al-9V-Y合金的热加工图. 结果表明,在高应变速率区, 合金易发生楔形开裂; 在1150℃, 0.01 s-1条件下,合金发生了α+β+γ→β+γ相变;在1200-1225℃, 0.01-0.05 s-1条件下, 合金发生了动态再结晶, 具有一定的超塑性,组织为均匀细小的γ晶粒, 此时最适于进行热加工. 研究发现, 1225℃处于α单相区,高温无序α相良好的变形能力是改善合金热加工性能的主要原因.锻造后的合金同时具有良好的断裂韧性和室温塑性. 在室温下,Ti-43Al-9V-Y合金中的B2相可以起到阻碍裂纹扩展的作用, 而不降低合金的塑性.

关键词 TiAl合金高温变形热压缩加工图动态再结晶    
Abstract

The hot deformation behavior of as-cast Ti-43Al-9V-Y alloy has been studied using thermo-simulator system Gleeble-1500D in the temperature range 1100-1225℃ and strain rate range 0.01-1 s-1. It was found that the flow behavior of Ti-43Al-9V-Y alloy depends on the deformation temperature and strain rate. The flow stress-strain curves exhibit oscillations in the stage of flow softening. According to principles of dynamic materials modeling (DMM), processing maps were constructed on the basis of flow stress data. Wedge cracking was expected to be observed in the region of high strain rates with low peak efficiency (<40%). The α+β+γ→β+γ phase transformation occurring at 1150℃ and 0.01 s-1 contributes to the peak efficiency of around 60 %. The dynamic recrystallization occurred at 1200-1225℃ and 0.01-0.05 s-1 with a peak efficiency of around 80%, which is the optimum condition for the hot deformation of Ti-43Al-9V-Y alloy. Combining with the titanium and aluminum phase graphs, it could be found that 1225℃ located at the single-phase region ofα phase. The excellent hot deformability of disorderedαphase is considered to be the main reason for the improvement of hot workability of TiAl alloys. As-forged alloys have good room-temperature ductility and fracture toughness simultaneously. In addition, it has been found that B2 phase could hinder the propagation of crack without decreasing the plasticity at room temperature.

Key wordsTiAl alloy    hot deformation    hot compression    processing map    dynamic recrystallization
收稿日期: 2013-08-26     
基金资助:

国家自然科学基金项目51074058和国家重点基础研究发展计划项目2011CB605502资助\par

作者简介: 孔凡涛, 男, 1971年生, 副教授

[1] Clemens H, Kestler H. Adv Eng Mater, 2000; 2: 551

[2] Imayev R M, Imayev V M, Oehring M, Appel F. Intermetallics, 2007; 15: 451
[3] Kothari K, Radhakrishnan R, Wereley N M. Prog Aerosp Sci, 2012; 55: 1
[4] Kong F T, Chen Y Y, Li B H. Acta Metall Sin, 2008; 44: 815
(孔凡涛, 陈玉勇, 李宝辉. 金属学报, 2008; 44: 815)
[5] Tetsui T, Shindo K, Kobayashi S, Takeyama M. Scr Mater, 2002; 47: 399
[6] Das G, Kestler H, Clemens H, Bartolotta P A. JOM, 2004; 56: 42
[7] Krishna V G, Prasad Y V R K, Birla N C, Rao S G. J Mater Process Technol, 1997; 71: 377
[8] Momeni A, Dehghani K. Mater Sci Eng, 2010; A527: 5467
[9] Wang J, Dong J X, Zhang M C, Xie X S. Mater Sci Eng, 2013; A566: 61
[10] Ma X, Zeng W D, Tian F, Zhou Y G, Sun Y. Mater Sci Eng, 2012; A545: 132
[11] Rao K P, Prasad Y V R K, Suresh K. Mater Sci Eng, 2012; A558: 30
[12] Wang G, Xu L, Wang Y, Zheng Z, Cui Y Y, Yang R. J Mater Sci Technol, 2011; 27: 893
[13] Wang G, Xu L, Wang Y, Zheng Z, Cui Y Y, Yang R. Acta Metall Sin, 2011; 47: 587
(王刚, 徐磊, 王永, 郑卓, 崔玉友, 杨锐. 金属学报, 2011; 47: 587)
[14] Rao K P, Prasad Y V R K, Suresh K. Mater Des, 2011; 32: 4874
[15] Prasad Y V R K, Seshacharyulu T. Int Mater Rev, 1998; 43: 243
[16] Sivakesavam O, Prasad Y V R K. Mater Sci Eng, 2002; A323: 270
[17] Jazayeri G A, Davies H A, Buckley R A. Mater Sci Eng, 2004; A375: 512
[18] Doi H, Hashimoto K, Kasahara K, Tsujimoto T. Mater Trans JIM, 1990; 31: 975
[19] Kong F T, Chen Y Y, Tian J, Chen Z Y, Han J C. Chin J Rare Met, 2004; 28: 75
(孔凡涛, 陈玉勇, 田竞, 陈子勇, 韩杰才. 稀有金属, 2004; 28: 75)
[20] Zhang W J, Appel F. Mater Sci Eng, 2002; A334: 59
[21] Prasad Y V R K, Rao K P. Mater Des, 2011; 32: 1851
[22] Imayev R M, Salishchev G A, Senkov O N, Imayev V M, Shagiev M R,Gabdullin N K, Kuznetsov A V, Froes F H. Mater Sci Eng, 2001; A300: 263
[23] Kong F T, Chen Y Y, Zhang D L, Zhang S Z. Mater Sci Eng, 2012; A539: 107
[24] Takeyama M, Kobayashi S. Intermetallics, 2005; 13: 993
[25] Prasad Y V R K, Seshacharyulu T. Mater Sci Eng, 1998; A243: 82
[26] Kim Y W, Dimiduk D M. JOM, 1991; 43: 40
[27] Clemens H, Bartels A, Bystrzanowski S, Chladil H, Leitner H, Dehm G,Gerling R, Schimansky F P. Intermetallics, 2006; 14: 1380
[1] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[2] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[3] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[4] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[5] 李小兵, 潜坤, 舒磊, 张孟殊, 张金虎, 陈波, 刘奎. W含量对Ti-42Al-5Mn-xW合金相转变行为的影响[J]. 金属学报, 2023, 59(10): 1401-1410.
[6] 刘仁慈, 王鹏, 曹如心, 倪明杰, 刘冬, 崔玉友, 杨锐. 700℃热暴露对 β 凝固 γ-TiAl合金表面组织及形貌的影响[J]. 金属学报, 2022, 58(8): 1003-1012.
[7] 陈玉勇, 叶园, 孙剑飞. TiAl合金板材轧制研究现状[J]. 金属学报, 2022, 58(8): 965-978.
[8] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[9] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[10] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.
[11] 倪珂, 杨银辉, 曹建春, 王刘行, 刘泽辉, 钱昊. 18.7Cr-1.0Ni-5.8Mn-0.2NNi型双相不锈钢的大变形热压缩软化行为[J]. 金属学报, 2021, 57(2): 224-236.
[12] 刘庆琦, 卢晔, 张翼飞, 范笑锋, 李瑞, 刘兴硕, 佟雪, 于鹏飞, 李工. Al19.3Co15Cr15Ni50.7高熵合金的热变形行为[J]. 金属学报, 2021, 57(10): 1299-1308.
[13] 李天瑞, 刘国怀, 于少霞, 王文娟, 张风奕, 彭全义, 王昭东. 直接包套轧制铸态Ti-46Al-8Nb合金的组织特征及热变形机制[J]. 金属学报, 2020, 56(8): 1091-1102.
[14] 周丽, 李明, 王全兆, 崔超, 肖伯律, 马宗义. 31%B4Cp/6061Al复合材料的热变形及加工图的研究[J]. 金属学报, 2020, 56(8): 1155-1164.
[15] 刘先锋, 刘冬, 刘仁慈, 崔玉友, 杨锐. Ti-43.5Al-4Nb-1Mo-0.1B合金的包套热挤压组织与拉伸性能[J]. 金属学报, 2020, 56(7): 979-987.