Please wait a minute...
金属学报  2011, Vol. 47 Issue (2): 191-196    DOI: 10.3724/SP.J.1037.2010.00431
  论文 本期目录 | 过刊浏览 |
Incoloy 800H高温变形流动应力预测模型
孙朝阳, 刘金榕, 李瑞, 张清东
北京科技大学机械工程学院, 北京 100083
CONSTITUTIVE MODELING FOR ELEVATED TEMPERATURE FLOW BEHAVIOR OF INCOLOY 800H SUPERALLOY
SUN Chaoyang, LIU Jinrong, LI Rui, ZHANG Qingdong
School of Mechanical and Engineering, University of Science and Technology Beijing, Beijing 100083
引用本文:

孙朝阳 刘金榕 李瑞 张清东. Incoloy 800H高温变形流动应力预测模型[J]. 金属学报, 2011, 47(2): 191-196.
, , , . CONSTITUTIVE MODELING FOR ELEVATED TEMPERATURE FLOW BEHAVIOR OF INCOLOY 800H SUPERALLOY[J]. Acta Metall Sin, 2011, 47(2): 191-196.

全文: PDF(913 KB)  
摘要: 采用Gleeble-1500热模拟实验机研究了 Incoloy 800H合金在变形温度为1273-1473 K和应变速率为0.01-10 s-1条件下的流动应力行为. 采用双曲正弦函数建立了 Incoloy 800H高温条件下的流动应力本构方程, 以六次多项式考虑了应变量耦合因素对本构关系的影响. 研究结果表明, Incoloy 800H在热压缩变形过程中, 低应变速率和高应变速率条件下分别呈动态软化和动态回复特征, 流动应力随应变速率的增加而增加, 随温度的升高而降低; 采用应变的六次多项式拟合得到的本构关系流动应力预测值与实验值吻合较好, 绝大多数(95%)情况下预测的误差小于 6.5%, 平均相对误差仅为3.15%.
关键词 Incoloy 800H流动应力本构关系热压缩    
Abstract:In order to realize accurate numerical simulation of rolling, forging, extrusion of Incoloy 800H superalloy and formulate reasonable process parameters of hot working, the flow stress behaviors of Incoloy 800H superalloy were investigated in the temperature range of 1273-1473 K and strain rate range of 0.01-10 s-1 on Gleeble-1500 thermo-simulation machine. Utilizing hyperbolic sine function and introducing the strain factor with six polynomial fitting, the constitutive equations of flow stress of Incoloy 800H superalloy at high temperature were established, then the accuracy of the constitutive equation was verified. The results showed that during the hot compression deformation of Incoloy 800H superalloy, the characteristics of dynamic softening and dynamic recovery were observed at lower strain rates and high strain rates conditions, respectively, flow stress increased with increasing strain rate, decreased with increasing temperature; the flow stress of Incoloy 800H superalloy predicted by the proposed models with 6th order polynomial fit agrees with the experimental value well, relative error is not more than 6.5% at the overwhelming majority (95%) cases of the deformation conditions, and average relative error is only 3.15%.
Key wordsIncoloy 800H    flow stress    constitutive equation    hot compression
收稿日期: 2010-08-30     
ZTFLH: 

TG146.4

 
基金资助:

国家自然科学基金钢铁联合基金重点资助项目50831008

作者简介: 孙朝阳, 男, 1976年生, 博士
[1] Tan L, Ren X, Sridharan K, Allen T R. Corros Sci, 2008; 50: 2040

[2] Yang J M. Petroleum Refinery Eng, 2002; 32(6): 18

(杨锦明. 炼油设计, 2002; 32(6): 18)

[3] Natesan K, Shankar P S. J Nucl Mater, 2009; 394: 46

[4] Tan L, Sridharan K, Allen T P. J Nucl Mater, 2006; 348: 263

[5] Sellars C M, McTegart W J. Acta Metall, 1966; 14: 1136

[6] Pu Z J, Wu K H, Shi J, Zou D. Mater Sci Eng, 1995; A192: 780

[7] Lin Y C, Chen M S, Zhong J. Comput Mater Sci, 2008; 42: 470

[8] Mandal S, Rakesh V, Sivaprasad P V, Venugopal S, Kasiviswanathan K V. Mater Sci Eng, 2009; A500: 114

[9] Hou H L, Jiang B, Wang Y Q, Li Z Q, Ren X P. Forg Stamp Technol, 2005; (1): 61

(侯红亮, 姜波, 王耀奇, 李志强, 任学平. 锻压技术, 2005; (1): 61)

[10] Zhang M C, Luo Z J, Zeng F C. J Mater Eng, 1999; (1): 20

(张麦仓, 罗子健, 曾凡昌. 材料工程, 1999; (1): 20)

[11] He Y, Zhang H G, Liu X F, Xie J X. Rare Metal Meter Eng, 2008; 37: 19

(何勇, 张红钢, 刘雪峰, 谢建新. 稀有金属材料与工程, 2008; 37: 19)

[12] Zhang B J, Zhao G P, Jiao L Y, Xu G H, Qin H Y, Feng D. Acta Metall Sin, 2005; 41: 351

(张北江, 赵光普, 焦兰英, 胥国华, 秦鹤勇, 冯涤. 金属学报, 2005; 41: 351)

[13] Ju Q, Li D G, Liu G Q. Acta Metall Sin, 2006; 42: 218

(鞠 泉, 李殿国, 刘国权. 金属学报, 2006; 42: 218)

[14] Li M Q, Yao X Y, Luo J, Lin Y Y, Sun S B, Wang H R. Acta Metall Sin, 2007; 43: 9

(李淼泉, 姚晓燕, 罗 皎, 林莺莺, 苏少博, 王海荣. 金属学报, 2007; 43: 9)

[15] Zener C, Hollomon H. J Appl Phys, 1944; 15: 22

[16] Sun C Y, Liu J R, Li R, Zhang Q D, Dong J X. Rare Metals, 2011; 30: 1

[17] Lei T, Baeder J D. SIAM J Sci Comput, 1999; 20: 3

[18] Phaniraj M P, Lahiri A K. J Mater Process Technol, 2003; 141: 219
[1] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[2] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[3] 刘庆琦, 卢晔, 张翼飞, 范笑锋, 李瑞, 刘兴硕, 佟雪, 于鹏飞, 李工. Al19.3Co15Cr15Ni50.7高熵合金的热变形行为[J]. 金属学报, 2021, 57(10): 1299-1308.
[4] 赵嫚嫚, 秦森, 冯捷, 代永娟, 国栋. AlNi1Cr9Al(1~3)Ni(1~7)WVNbB钢热变形行为的影响[J]. 金属学报, 2020, 56(7): 960-968.
[5] 周丽,张鹏飞,王全兆,肖伯律,马宗义,于涛. B4C/6061Al复合材料热压缩断裂行为的多尺度研究[J]. 金属学报, 2019, 55(7): 911-918.
[6] 万志鹏, 王涛, 孙宇, 胡连喜, 李钊, 李佩桓, 张勇. GH4720Li合金热变形过程动态软化机制[J]. 金属学报, 2019, 55(2): 213-222.
[7] 郭祥如, 孙朝阳, 王春晖, 钱凌云, 刘凤仙. 基于三维离散位错动力学的fcc结构单晶压缩应变率效应研究[J]. 金属学报, 2018, 54(9): 1322-1332.
[8] 梁后权, 郭鸿镇, 宁永权, 姚泽坤, 赵张龙. 基于软化机制的TC18钛合金本构关系研究*[J]. 金属学报, 2014, 50(7): 871-878.
[9] 魏海莲,刘国权,肖翔,张明赫. 表观的和基于物理的35Mn2钢奥氏体热变形本构分析[J]. 金属学报, 2013, 49(6): 731-738.
[10] 孔凡涛,崔宁,陈玉勇,熊宁宁. Ti-43Al-9V-Y合金的高温变形行为研究[J]. 金属学报, 2013, 49(11): 1363-1368.
[11] 温道胜,宗影影,徐文臣,杨单媚,单德彬. 0.037%H对铸态Ti-45Al-5Nb-0.8Mo-0.3Y合金高温变形行为的影响[J]. 金属学报, 2013, 49(11): 1428-1432.
[12] 余晖 KIM Youngmin 于化顺 YOU Bongsun 闵光辉. Mg-Zn-Zr-Ce合金高温变形行为与热加工性能研究[J]. 金属学报, 2012, 48(9): 1123-1131.
[13] 孙朝阳 栾京东 刘赓 李瑞 张清东. AZ31镁合金热变形流动应力预测模型[J]. 金属学报, 2012, 48(7): 853-860.
[14] 潘晓林 汪波 孙文儒 涂赣峰 郭守仁 胡壮麒. 均匀化处理对GH742合金热变形行为的影响[J]. 金属学报, 2012, 48(11): 1403-1408.
[15] 童剑 黄华 袁广银 丁文江. 准晶增强的Mg-Zn-Al-(Y)合金热压缩变形行为[J]. 金属学报, 2011, 47(12): 1520-1526.