Please wait a minute...
金属学报  2009, Vol. 45 Issue (7): 892-896    
  论文 本期目录 | 过刊浏览 |
2024铝合金中沉淀相对PLC效应的影响
熊少敏; 张青川; 曹鹏涛; 肖锐
(中国科技大学中国科学院材料力学行为和设计重点实验室; 合肥 230027)
EFFECT OF PRECIPITATE ON PLC EFFECT IN 2024 Al ALLOY
XIONG Shaomin; ZHANG Qingchuan; CAO Pengtao; XIAO Rui
Key Laboratory of Mechanical Behavior and Design of Materials; Chinese Academy of Sciences; University of Science and Technology of China; Hefei 230027
引用本文:

熊少敏 张青川 曹鹏涛 肖锐. 2024铝合金中沉淀相对PLC效应的影响[J]. 金属学报, 2009, 45(7): 892-896.
, , , . EFFECT OF PRECIPITATE ON PLC EFFECT IN 2024 Al ALLOY[J]. Acta Metall Sin, 2009, 45(7): 892-896.

全文: PDF(1255 KB)  
摘要: 

对2024铝合金进行不同温度下的热处理, 得到了一系列具有不同溶质原子浓度的基体及析出相含量的铝合金试样. 将这些试样分别在低温(-100 ℃)和室温(25 ℃)下进行拉伸实验, 分析其锯齿幅值和临界应变随应变率的变化趋势. 结果表明, 溶质原子是 Portevin--Le Chatelier (PLC)效应的必要因素, 单纯的位错切割沉淀相不足以产生PLC效应, 只能影响PLC效应, 并且沉淀相对PLC效应的影响在中等拉伸应变率时表现明显.

关键词 2024铝合金PLC效应锯齿幅值临界应变热处理    
Abstract

It is normally accepted that the interaction among solute atoms, dislocations
and precipitate leads to Portevin--Le Chatelier (PLC) effect during the plastic
deformation of alloys. Precipitate is directly responsible for some inverse behavior of
PLC effect, such as the inversion of the temperature dependence of critical strain;
because these behaviors appear only when precipitate exist in the alloys. In this paper,
the solute concentration in matrix and the fraction of the precipitate in 2024 Al alloy
are changed by heat treatment. Subsequently, tensile experiments are conducted at
room temperature (25 ℃) and low temperature (-100 ℃) on these treated specimens.
The magnitude of serration and the critical strain of the serrated flow are analyzed and
the results show that the diffusing solute atoms are necessary for the appearance of
PLC effect while the cutting of the precipitate particles alone can not lead to this
phenomenon. The mobile dislocations will be blocked and piled up strongly in the front
of precipitate and thus precipitate will have an influence on PLC effect. This influence
is obvious during tensile tests at medium strain rate.

Key words2024 Al alloy    Portevin--Le Chatelier (PLC) effect    magnitude of serration    critical stain    heat treatment
收稿日期: 2009-02-23     
ZTFLH: 

O34

 
基金资助:

国家自然科学重点基金项目10872189和10732080资助

作者简介: 熊少敏, 男, 1987年生

[1] Pottevin A, Chatelier F L. C R Acad Sci Paris, 1923; 176: 507
[2] Pottevin A, Chatelier F L. Trans Am Soc Steel Treat, 1924; 5: 457
[3] Rizzi E, H¨ahner P. Int J Plast, 2004; 20: 121
[4] Cottrell A H. Dislocations and Plastic Flow in Crystals. Oxford: Oxford University Press, 1953: 134
[5] Cottrell A H. Philos Mag, 1953; 44: 829
[6] Miguel M C, Vespignani A, Zapperi S, Weiss J, Grasso J R. Nature, 2001; 410: 67
[7] Yoshinaga H, Morozumi S. Philos Mag, 1971; 23: 1351
[8] Yoshinaga H, Morozumi S. Philos Mag, 1971; 23: 1367
[9] Estrin Y, Kubin L P. In: M¨uhlhaus H B ed., Continuum Models for Materials with Microstructures, New York: John Wiley & Sons Ltd., 1995: 395
[10] Pink E, Grinberg A. Acta Metall, 1982; 30: 2153
[11] Jiang H F, Zhang Q C, Xu Y H, Wu X P. Acta Phys Sin, 2006; 55: 409
(江慧丰, 张青川, 徐毅豪, 伍小平. 物理学报, 2006; 55: 409)

[12] Tan Q. Acta Phys Sin, 1994; 43: 1658
(谭启. 物理学报, 1994; 43: 1658)

[13] Brechet Y, Estrin Y. Acta Metall Mater, 1995; 43: 955
[14] Zhu A W. Acta Mater, 1998; 46: 3211
[15] Chmel´?k F, Pink E, Kr´ol J, Bal´?k J, Pesicka J, Luk´ac P.
Acta Mater, 1998; 46: 4435
[16] Erwin P, Janusz K. Acta Metall Mater, 1995; 43: 2351
[17] Li H X, Park J K. Mater Sci Eng, 2000; A280: 156
[18] Sun L, Zhang Q C. Yan S P, Jiang H F, Liu H W, Lu J Y, Wu X P. Acta Phys Sin, 2007; 56: 3411
(孙亮, 张青川, 晏顺平, 江慧丰, 刘颢文, 卢俊勇, 伍小平. 物理学报, 2007; 56: 3411)

[19] Sun L, Zhang Q C, Jiang H F. Acta Metall Sin, 2006; 42: 1248
(孙亮, 张青川, 江慧丰. 金属学报, 2006; 42: 1248)

[20] Jiang H F, Zhang Q C, Xu Y H, Wu X P. Acta Metall Sin, 2006; 42: 139
(江慧丰, 张青川, 徐毅豪, 伍小平. 金属学报, 2006; 42: 139)

[21] Kubin L P, Estrin Y. Acta Metall Mater, 1990; 38: 697

[1] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[2] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[3] 杨累, 赵帆, 姜磊, 谢建新. 机器学习辅助2000 MPa级弹簧钢成分和热处理工艺开发[J]. 金属学报, 2023, 59(11): 1499-1512.
[4] 孙腾腾, 王洪泽, 吴一, 汪明亮, 王浩伟. 原位自生2%TiB2 颗粒对2024Al增材制造合金组织和力学性能的影响[J]. 金属学报, 2023, 59(1): 169-179.
[5] 韩林至, 牟娟, 周永康, 朱正旺, 张海峰. 热处理温度对Ti0.5Zr1.5NbTa0.5Sn0.2 高熵合金组织结构与力学性能的影响[J]. 金属学报, 2022, 58(9): 1159-1168.
[6] 李钊, 江河, 王涛, 付书红, 张勇. GH2909低膨胀高温合金热处理中的组织演变行为[J]. 金属学报, 2022, 58(9): 1179-1188.
[7] 张家榕, 李艳芬, 王光全, 包飞洋, 芮祥, 石全强, 严伟, 单以银, 杨柯. 热处理对一种双峰晶粒结构超低碳9Cr-ODS钢显微组织与力学性能的影响[J]. 金属学报, 2022, 58(5): 623-636.
[8] 曾小勤, 王杰, 应韬, 丁文江. 镁及其合金导热研究进展[J]. 金属学报, 2022, 58(4): 400-411.
[9] 袁波, 郭明星, 韩少杰, 张济山, 庄林忠. 添加3%ZnAl-Mg-Si-Cu合金非等温时效析出行为的影响[J]. 金属学报, 2022, 58(3): 345-354.
[10] 陈润, 王帅, 安琦, 张芮, 刘文齐, 黄陆军, 耿林. 热挤压与热处理对网状TiBw/TC18复合材料组织及性能的影响[J]. 金属学报, 2022, 58(11): 1478-1488.
[11] 王迪, 黄锦辉, 谭超林, 杨永强. 激光增材制造过程中循环热输入对组织和性能的影响[J]. 金属学报, 2022, 58(10): 1221-1235.
[12] 王文权, 王苏煜, 陈飞, 张新戈, 徐宇欣. 选区激光熔化成形TiN/Inconel 718复合材料的组织和力学性能[J]. 金属学报, 2021, 57(8): 1017-1026.
[13] 王悦, 王继杰, 张昊, 赵泓博, 倪丁瑞, 肖伯律, 马宗义. 热处理对激光选区熔化AlSi10Mg合金显微组织及力学性能的影响[J]. 金属学报, 2021, 57(5): 613-622.
[14] 马德新, 赵运兴, 徐维台, 皮立波, 李重行. 高温合金单晶铸件中共晶组织分布的表面效应[J]. 金属学报, 2021, 57(12): 1539-1548.
[15] 张少华, 谢光, 董加胜, 楼琅洪. 单晶高温合金共晶溶解行为的差热分析[J]. 金属学报, 2021, 57(12): 1559-1566.