Please wait a minute...
金属学报  2009, Vol. 45 Issue (7): 887-891    
  论文 本期目录 | 过刊浏览 |
ZK60镁合金热压缩变形流变应力行为与预测
覃银江; 潘清林; 何运斌; 李文斌; 刘晓艳; 范曦
(中南大学材料科学与工程学院; 长沙 410083)
HOT COMPRESSION BEHAVIOR AND FLOW STRESS PREDICTION OF ZK60 MAGNESIUM ALLOY
QIN YinJiang; PAN Qinglin; HE Yunbin; LI Wenbin; LIU Xiaoyan; FAN Xi
School of Materials Science and Engineering; Central South University; Changsha 410083
引用本文:

覃银江 潘清林 何运斌 李文斌 刘晓艳 范曦. ZK60镁合金热压缩变形流变应力行为与预测[J]. 金属学报, 2009, 45(7): 887-891.
, , , , , . HOT COMPRESSION BEHAVIOR AND FLOW STRESS PREDICTION OF ZK60 MAGNESIUM ALLOY[J]. Acta Metall Sin, 2009, 45(7): 887-891.

全文: PDF(1048 KB)  
摘要: 

在变形温度为523---673 K, 应变速率为0.001---1 s-1的条件下, 采用Gleeble--1500热模拟试验机对ZK60镁合金的热变形行为进行了研究. 结果表明, ZK60镁合金流变应力随变形温度升高和应变速率的降低而减小. 其高温压缩流变应力曲线可描述为加工硬化、过渡、软化和稳态流变4个阶段, 但在温度较高和应变速率较小时, 过渡阶段不很明显. 建立了一个包含应变的流变应力预测模型, 模型中的9个独立参数可以通过非线性最小二乘法拟合求得, 预测的流变应力曲线与实验结果吻合较好.

关键词 ZK60镁合金流变应力热变形动态再结晶    
Abstract

In order to study the workability and establish the flow stress constitutive equation for ZK60 magnesium alloy, hot compressive deformation behavior of the magnesium alloy was investigated at the temperature range from 523 to 673 K and strain rate range from 0.001 to 1 s-1 on Gleeble--1500 thermal simulator. The results show that flow stress of ZK60 magnesium alloy decreases with the increase of deformation temperature and the decrease of strain rate. The flow stress curves obtained from experiments are composed of four different stages, i.e., work hardening, transition, softening and steady stages. While for the relative high temperature and low strain rate, transition stage is not very obvious. A method to predict flow stress considering the effect of true strain was presented. Flow stress model is expressed by nine independent parameters and they are obtained by Least--Square method. The predicted stress--strain curves are in good agreement with the experimental results, which confirmed that the developed model can give a reasonable estimate of the flow stress for ZK60 magnesium alloy.

Key wordsZK60 magnesium alloy    flow stress    hot deformation    dynamic recrystallization
收稿日期: 2008-12-08     
ZTFLH: 

TG146.21

 
作者简介: 覃银江, 男, 1984年生, 硕士生

[1] Clow B B. Adv Mater Processes, 1996; 150(4): 33
[2] Mordike B L, Ebert T. Mater Sci Eng, 2001; A302: 37
[3] Polmear I J. Mater Sci Technol, 1994; 10: 1
[4] Chen Z H, Xia W J, Yan H G, Fu D F, Chen J H. Chem Ind Eng Progress, 2004; 23: 127
(陈振华, 夏伟军, 严红革, 傅定发, 陈吉华. 化工进展, 2004; 23: 127)

[5] Yu K, Li W X, Wang R C, Ma Z Q. Chin J Nonferrous Met, 2003; 13: 277
(余琨, 黎文献, 王日初, 马正青. 中国有色金属学报, 2003; 13: 277)

[6] Lin Q Q, Zhang H, Peng D S, Lin G Y, Wang Z Q. Nat Sci J Xiangtan Univ, 2002; 24: 84
(林启权, 张 辉, 彭大暑, 林高用, 王振球. 湘潭大学自然科学学报, 2002; 24: 84)

[7] Frost H J, Ashby M F. Deformation Mechanism Maps. Oxford: Pergamon Press, 1982: 40
[8] Galiyev A, Sitdikov O, Kaibyshev R. Mater Trans, 2003; 44: 426
[9] McQueen H J. Metall Mater Trans, 2002; 33A: 345
[10] Takuda H, Fujimoto H, Hatta N. J Mater Process Technol, 1998; 80–81: 513
[11] Takuda H, Morishita T, Kinoshita T, Shirakawa N. J Mater Process Technol, 2005; 164–165: 1258
[12] Zhou H T, Zeng X Q, Wang Q D, Ding W J. Acta Metall Sin (Engl Lett), 2004; 17: 155
[13] Wang L Y, Fan Y G, Hang G J. Trans Nonferrous Met Soc China, 2003; 13: 335
[14] Zhang Y, Ma C J, Lu C. Light Alloy Fabr Technol, 2003; 31(7): 35
(张娅, 马春江, 卢晨. 轻合金加工技术, 2003; 31(7): 35)

[15] Chen Z H, Xu F Y, Fu D F, Xia W J. Chem Ind Eng Progress, 2006; 25: 140
(陈振华, 许方艳, 傅定发, 夏伟军. 化工进展, 2006; 25: 140)

[16] Zener C, Hollomon J H. J Appl Phys, 1944; 15: 22
[17] Jonas J J, Sellars C M, Tegart M W J. Int Mater Rev, 1969; 14: 1
[18] Liu J, Cui Z S, Li C X. Comput Mater Sci, 2008; 41: 375
[19] Ryan N D, McQueen H J. J Mater Process Technol, 1990; 21: 177
[20] Sheng Z Q, Shivpuri R. Mater Sci Eng, 2006; A419: 202

[1] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[2] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[3] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[4] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[5] 孙毅, 郑沁园, 胡宝佳, 王平, 郑成武, 李殿中. 3Mn-0.2C中锰钢形变诱导铁素体动态相变机理[J]. 金属学报, 2022, 58(5): 649-659.
[6] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[7] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.
[8] 颜孟奇, 陈立全, 杨平, 黄利军, 佟健博, 李焕峰, 郭鹏达. 热变形参数对TC18钛合金β相组织及织构演变规律的影响[J]. 金属学报, 2021, 57(7): 880-890.
[9] 倪珂, 杨银辉, 曹建春, 王刘行, 刘泽辉, 钱昊. 18.7Cr-1.0Ni-5.8Mn-0.2NNi型双相不锈钢的大变形热压缩软化行为[J]. 金属学报, 2021, 57(2): 224-236.
[10] 刘超, 姚志浩, 江河, 董建新. GH4720Li合金毫米级粗大晶粒热变形获得均匀等轴晶粒的可行性及工艺控制[J]. 金属学报, 2021, 57(10): 1309-1319.
[11] 刘庆琦, 卢晔, 张翼飞, 范笑锋, 李瑞, 刘兴硕, 佟雪, 于鹏飞, 李工. Al19.3Co15Cr15Ni50.7高熵合金的热变形行为[J]. 金属学报, 2021, 57(10): 1299-1308.
[12] 周丽, 李明, 王全兆, 崔超, 肖伯律, 马宗义. 31%B4Cp/6061Al复合材料的热变形及加工图的研究[J]. 金属学报, 2020, 56(8): 1155-1164.
[13] 赵嫚嫚, 秦森, 冯捷, 代永娟, 国栋. AlNi1Cr9Al(1~3)Ni(1~7)WVNbB钢热变形行为的影响[J]. 金属学报, 2020, 56(7): 960-968.
[14] 陈文雄, 胡宝佳, 贾春妮, 郑成武, 李殿中. 热变形后Ni-30%Fe模型合金中奥氏体的亚动态软化行为[J]. 金属学报, 2020, 56(6): 874-884.
[15] 张阳, 邵建波, 陈韬, 刘楚明, 陈志永. Mg-5.6Gd-0.8Zn合金多向锻造过程中的变形机制及动态再结晶[J]. 金属学报, 2020, 56(5): 723-735.