Please wait a minute...
金属学报  2009, Vol. 45 Issue (7): 880-886    
  论文 本期目录 | 过刊浏览 |
晶粒尺寸对42CrMoVNb钢超高周疲劳性能的影响
张永健1;2 惠卫军2 项金钟1 董瀚2 翁宇庆2;3
1) 云南大学物理科学技术学院; 昆明 650091
2) 钢铁研究总院先进钢铁材料技术国家工程研究中心; 北京 100081
3) 中国金属学会; 北京 100711
EFFECT OF GRAIN SIZE ON ULTRA--HIGH--CYCLE FATIGUE PROPERTIES OF 42CrMoVNb STEEL
ZHANG Yongjian1;2 HUI Weijun2 XIANG Jinzhong1 DONG Han2 WENG Yuqing2;3
1) School of Physical Science and Technology; Yunnan University; Kunming 650091
2) National Engineering Research Center of Advanced Steel Technology; Central Iron and Steel Research Institute; Beijing 100081
3) The Chinese Society for Metals; Beijing 100711
引用本文:

张永健 惠卫军 项金钟 董瀚 翁宇庆. 晶粒尺寸对42CrMoVNb钢超高周疲劳性能的影响[J]. 金属学报, 2009, 45(7): 880-886.
, . EFFECT OF GRAIN SIZE ON ULTRA--HIGH--CYCLE FATIGUE PROPERTIES OF 42CrMoVNb STEEL[J]. Acta Metall Sin, 2009, 45(7): 880-886.

全文: PDF(1257 KB)  
摘要: 

研究了不同热处理制度下得到的3种具有不同晶粒尺寸的42CrMoVNb高强度钢的超高周疲劳性能. 结果表明, 超高周疲劳强度和疲劳强度比并不随晶粒尺寸的减小而单调提高, 中等晶粒尺寸的试样具有最高的疲劳强度和疲劳强度比. SEM断口观察表明, 绝大部分试样的疲劳裂纹起源于夹杂物. 随着疲劳断口裂纹源夹杂物处应力强度因子幅ΔKinc的减小, 疲劳寿命Nf增加; 而在夹杂物周围的粗糙粒状区域(GBF)的应力强度因子幅ΔKGBF并不随Nf变化而变化, 基本为一常数, 且粗晶粒试样的ΔKGBF高于细晶粒试样. 这表明, 细化晶粒对高强度钢的超高周疲劳性能有着复杂的影响,存在一个合理的细化晶粒范围.

关键词 42CrMoVNb高强度钢晶粒尺寸超高周疲劳疲劳源夹杂物    
Abstract

For low and medium strength steels, grain size has significant effects on their fatigue properties, whereas non--metallic inclusion has no or little effect. In previous work, the effects of grain size on high--cycle fatigue fracture behaviors of 42CrMoVNb high strength steel were studied and illustrated that grain refining has a complicated influence on its fatigue properties. In this paper, the ultra--high--cycle fatigue properties of 42CrMoVNb high strength steel with three kinds of prior austenite grain sizes produced by different heat treatment procedures were studied. Experimental results show that both fatigue strength and fatigue strength ratio don't increase monotonically with the decrease of gain size, and fairly better fatigue properties could be obtained at a medium grain size of 15 μm. SEM observations of fatigue fracture surface reveal that most of fatigue cracks initiated from inclusions and a granular bright facet (GBF) was found in the vicinity around inclusion at cycles beyond about 1×106. Further investigation shows that the stress intensity factor range at crack initiation site of inclusion ΔKinc trends to decrease gradually with increasing the fatigue life Nf, while the stress intensity factor range at GBF boundary ΔKGBF keeps almost constant with varying Nf. ΔKGBF of coarse grain size is higher than that of fine grain size. It could conclude that the effect of grain size on ultra--high--cycle fatigue properties is rather complicated and an appropriate size of prior austenite might be existed.

Key words42CrMoVNb high strength steel    grain size    ultra--high--cycle fatigue    fatigue crack initiation site    inclusion
收稿日期: 2008-12-02     
ZTFLH: 

TG111.8

 
基金资助:

国家重点基础研究发展计划资助项目2004CB619104

作者简介: 张永健, 男, 1982年生, 硕士生

[1] Weng Y Q. Ultra–Fine Steel–Strengthening Theory of Microstructure of Steel and Control Technology. Beijing: Metallurgical Industry Press, 2003: 9
(翁宇庆. 超细晶钢---钢的组织强化理论与控制技术. 北京: 冶金工业出版社, 2003: 9)

[2] Burke J J, Weiss V, translated by Wang Y W, Zhang Y C. Ultrafine–Grain Metals. Beijing: National Defense Industry Press, 1982: 214
(Burke J J, Weiss V著, 王燕文, 张勇昌译. 超细晶粒金属. 北京: 国防工业出版社, 1982: 214)

[3] Kage M, Miller K J, Smith R A. Fatigue Fract Eng Mater Struct, 1992; 15: 763
[4] Nie Y H, Hui W J, Fu W T, Weng Y Q, Dong H. Acta Metall Sin, 2007; 43: 1031
(聂义宏, 惠卫军, 傅万堂, 翁宇庆, 董瀚. 金属学报, 2007; 43: 1031)

[5] Zhang J M, Li S X, Yang Z G, Li G Y, Hui W J,Weng Y Q. Int J of Fatigue, 2007; 29: 765
[6] Zhang J M, Yang Z G, Li S X, Li G Y, Hui W J, Weng Y Q. Acta Metall Sin, 2006; 42: 259
(张继明, 杨振国, 李守新, 李广义, 惠卫军, 翁宇庆. 金属学报, 2006; 42: 259)

[7] Abe T, Furuya Y, Matsuoka S. Fatigue Fract Eng Mater Struct, 2004; 27: 159
[8] Murakami Y, Yokoyama N, Nagata J. Fatigue Fract Eng Mater Struct, 2002; 25: 735
[9] Wang Q Y, Berard J Y, Dubarre A, Baudry G, Rathery S, Bathias C. Fatigue Fract Eng Mater Struct, 1999; 22: 667
[10] Wang X S, Liang F, Zeng Y P, Xie X S. Acta Metall Sin, 2005; 41: 1272
(王习术, 梁锋, 曾燕屏, 谢锡善. 金属学报, 2005; 41: 1272)

[11] Chapetti M D, Miyata H, Tagawa T, Miyata T, Fujioka M. Int J Fatigue, 2005; 27: 235
[12] Kim H K Choi M II, Chung C S, Dong H S. Mater Sci Eng, 2003; A340: 243
[13] Nomura I, Iwama N. Tetsu Hagan´e, 1998; 84: 31
(野村一卫, 岩间直树. 铁と钢, 1998; 84: 31)

[14] Masounave J, Bailon J P. Scr Metall, 1976; 10: 165
[15] Yang Z G, Zhang J M, Li S X, Chu Z M, Hui W J, Weng Y Q. Acta Metall Sin, 2004; 40: 367
(杨振国, 张继明, 李守新, 褚作明, 惠卫军, 翁宇庆. 金属学报, 2004; 40: 367)

[16] Hui W J, Dong H, Wang M Q, Chen S L, Weng Y Q. J Met Heat Treat, 2002; 27(3): 14
(惠卫军, 董瀚, 王毛球, 陈思联, 翁宇庆. 金属热处理, 2002; 27(3): 14)

[17] Hui W J, Nie Y H, Dong H, Weng Y Q, Wang C X. J Mater Sci Technol, 2008; 24: 787
[18] Murakami Y, Kodama S, Konuma S. Trans JSME, 1988; 54A: 688
(村上敬宜, 見玉昭太郎, 小沼静代. 日本机械学会论文集, 1988; 54A: 688)

[19] Zhao H M, Hui W J, Nie Y H, Weng Y Q, Dong H. Chin J Mater Res, 2008; 22: 526
(赵海民, 惠卫军, 聂义宏, 翁宇庆, 董 瀚. 材料研究学报, 2008; 22: 526)

[20] Ochi Y, Matsumura T, Masaki K, Yoshida S. Fatigue Fract Eng Mater Struct, 2002; 25: 823
[21] Sakai T, Sato Y, Oguma. Fatigue Fract Eng Mater Struct, 2002; 25: 765
[22] Hong Y S, Fang B. Adv Mech, 1993; 23: 468
(洪友士, 方 飚. 力学进展, 1993; 23: 468)

[23] Wang Q Y, Berard J Y, Rathery S, Bathias C. Fatigue Fract Eng Mater Struct, 1999; 22: 673
[24] Murakami Y, Nomoto T, Ueda T. Fatigue Fract Eng Mater Struct, 1999; 22: 581
[25] Hui W J, Dong H, Weng Y Q, Shi J, Nie Y H, Chu Z M, Chen Y B. Acta Metall Sin, 2004; 40: 561
(惠卫军, 董瀚, 翁宇庆, 时 \ \ 捷, 聂义宏, 褚作明, 陈蕴博. 金属学报, 2004; 40: 561)

[26] Yu D G, Tan Y X. Microstructure and Strengthening of Steel–Relationship of Microstructure and Strength and Toughness. Shanghai: Shanghai Scientific and Technical Press, 1983: 290
(俞德刚, 谈育煦编著. 钢的组织强度学---组织与强韧性. 上海: 上海科学技术出版社, 1983: 290)

[27] Kuhlmann-Wilsdorf D, Thomason P F. Acta Metall, 1982; 30: 1243

[1] 陈润农, 李昭东, 曹燕光, 张启富, 李晓刚. 9%Cr合金钢在含Cl环境中的初期腐蚀行为及局部腐蚀起源[J]. 金属学报, 2023, 59(7): 926-938.
[2] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[3] 张月鑫, 王举金, 杨文, 张立峰. 冷却速率对管线钢中非金属夹杂物成分演变的影响[J]. 金属学报, 2023, 59(12): 1603-1612.
[4] 孙阳庭, 李一唯, 吴文博, 蒋益明, 李劲. CaMg掺杂下夹杂物对C70S6非调质钢点蚀行为的影响[J]. 金属学报, 2022, 58(7): 895-904.
[5] 刘洁, 徐乐, 史超, 杨少朋, 何肖飞, 王毛球, 时捷. 稀土Ce对非调质钢中硫化物特征及微观组织的影响[J]. 金属学报, 2022, 58(3): 365-374.
[6] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[7] 朱苗勇, 邓志银. 钢精炼过程非金属夹杂物演变与控制[J]. 金属学报, 2022, 58(1): 28-44.
[8] 李晓倩, 王富国, 梁爱民. 喷涂工艺对Ta2O5原位复合钽基纳米晶涂层微观结构及摩擦磨损性能的影响[J]. 金属学报, 2021, 57(2): 237-246.
[9] 唐海燕, 刘锦文, 王凯民, 肖红, 李爱武, 张家泉. 连铸中间包加热技术及其冶金功能研究进展[J]. 金属学报, 2021, 57(10): 1229-1245.
[10] 张守清, 胡小锋, 杜瑜宾, 姜海昌, 庞辉勇, 戎利建. 海洋平台用Ni-Cr-Mo-B超厚钢板的截面效应[J]. 金属学报, 2020, 56(9): 1227-1238.
[11] 许占一, 沙玉辉, 张芳, 章华兵, 李国保, 储双杰, 左良. 取向硅钢二次再结晶过程中的取向选择行为[J]. 金属学报, 2020, 56(8): 1067-1074.
[12] 和淑文, 王鸣华, 白琴, 夏爽, 周邦新. WC-TiC-TaC-Co硬质合金中TaC含量对其显微组织和力学性能的影响[J]. 金属学报, 2020, 56(7): 1015-1024.
[13] 周红伟, 白凤梅, 杨磊, 陈艳, 方俊飞, 张立强, 衣海龙, 何宜柱. 1100 MPa级高强钢的低周疲劳行为[J]. 金属学报, 2020, 56(7): 937-948.
[14] 孙飞龙, 耿克, 俞峰, 罗海文. 超洁净轴承钢中夹杂物与滚动接触疲劳寿命的关系[J]. 金属学报, 2020, 56(5): 693-703.
[15] 张新房, 闫龙格. 脉冲电流调控金属熔体中的非金属夹杂物[J]. 金属学报, 2020, 56(3): 257-277.