Please wait a minute...
金属学报  2009, Vol. 45 Issue (6): 744-748    
  论文 本期目录 | 过刊浏览 |
Cu/Sn--58Bi/Cu焊点在电迁移过程中晶须和小丘的生长
何洪文; 徐广臣; 郭福
(北京工业大学材料科学与工程学院; 北京 100124)
FORMATION OF WHISKER AND HILLOCK IN Cu/Sn--58Bi/Cu SOLDERED JOINT DURING ELECTROMIGRATION
HE Hongwen; XU Guangchen; GUO Fu
Beijing University of Technology; School of Materials Science and Engineering; Beijing 100124
引用本文:

何洪文 徐广臣 郭福. Cu/Sn--58Bi/Cu焊点在电迁移过程中晶须和小丘的生长[J]. 金属学报, 2009, 45(6): 744-748.
, , . FORMATION OF WHISKER AND HILLOCK IN Cu/Sn--58Bi/Cu SOLDERED JOINT DURING ELECTROMIGRATION[J]. Acta Metall Sin, 2009, 45(6): 744-748.

全文: PDF(5707 KB)  
摘要: 

利用SEM和EDS研究了Cu/Sn--58Bi/Cu焊点在电流密度为5×103 A/cm2, 80℃条件下晶须和小丘的生长. 通电540 h后, 在焊点阴极界面区出现了钎料损耗, 同时形成了晶须, 而在阳极Cu基板的钎料薄膜上形成了大量弯曲状晶须和块状小丘. EDS检测表明, 这些 晶须和小丘为Sn和Bi的混合物. 通电630 h后, 阳极上的晶须和小丘数量明显增多, 原来形成晶须的尺寸和形状没有变化, 阴极界面处 形成Cu6Sn5金属间化合物. 上述现象表明: 电迁移引发了金属原子的扩散迁移, 从而在阳极Cu基板上形成了一层钎料薄膜. 钎料薄膜中金属间化合物的形成导致压应力的产生, 促使晶须和小丘生长, 而阴极钎料损耗区域内晶须的形成与Joule热聚集有关.

关键词 电迁移 晶须 金属间化合物 压应力 Joule热    
Abstract

With the trends of higher integration and microminiaturization in electronic packaging, the sizes of the soldered joints are becoming smaller and smaller. The corresponding current density in the soldered joints can easily reach 103 A/cm2 or higher, which makes the electromigration (EM) much more prominent. EM will lead to the atoms to pile up at the anode side and produce voids or cracks at the cathode side. Furthermore, with the stressing time increasing, these voids or cracks will propagate gradually resulting in the soldered joint rupture. EM may induce whisker growth resulting in the short circuit. All these defects can degrade the reliability of the soldered joints. In this paper, the effect of electric current (5×103 A/cm2, 80℃) on the whisker and hillock growth in Cu/Sn--58Bi/Cu soldered joint was investigated by SEM and EDS. It was found that after current stressing for 540 h, the solder at the cathode side is depleted and whiskers appear in the depleted zone, while solder film forms on the Cu substrate at the anode side and a large number of whiskers and hillocks appear on the film. EDS revealed that these whiskers and hillocks are mixtures of Sn and Bi. When the stressing time reached 630 h, more whiskers and hillocks form and more amounts of Cu6Sn5 intermetallics form at the interface of solder and cathode. The above facts indicated that the electromigration may induce diffusion and migration of metal atoms, leading to formation of a thin solder film on the anodic Cu substrate. The compressive stress generated by intermetallics formation provides a driving force for whisker and hillock growth on the solder film, and the Joule heating should be responsible for the whisker growth at the cathode side. There is no credible approach for predicting the whisker growth time, growth velocity and whisker length although several mechanisms have been proposed, but are not universally accepted. By general consensus, compressive stress is recognized as the main driving force for whisker growth and a break of the protective oxide on the surface.

Key wordselectromigration    whisker    intermetallics    compressive stress    Joule heating
收稿日期: 2008-11-19     
ZTFLH: 

TG115

 
基金资助:

新世纪优秀人才支持计划资助项目04--0202

作者简介: 何洪文,男, 1979年生, 博士生

[1] Lin Y W, Lai Y S, Lin Y L, Tu C T, Kao C R. J Electron Mater, 2008; 37: 17
[2] Tu K N. Phys Rev, 1994; 49B: 2030
[3] Kakeshita T, Kawanaka R, Hasegawa T. J Mater Sci,1982; 17: 2560
[4] Hasiguti R R. Acta Metall, 1955; 3: 200
[5] Lin Y H, Hu Y C, Tsai C M, Kao C R, Tu K N. Acta Mater, 2003; 53: 2029
[6] Nah J W, Paik K W, Suh J O, Tu K N. J Appl Phys, 2003; 94: 7560
[7] Gan H, Tu K N. J Appl Phys, 2005; 97: 063514–1
[8] Gu X, Chan Y C. J Electron Mater, 2008; 37: 1721
[9] Miao H W, Duh J G. Mater Chem Phys, 2001; 71: 255
[10] Dong W X, Shi Y W, Xia Z D, Lei Y P, Guo F. J Electron Mater, 2008; 37: 982
[11] Chen Z G. PhD Thesis, Beijing University of Technology, 2003
(陈志刚. 北京工业大学博士学位论文, 2003)
[12] Chen Z G. J Electron Mater, 2002; 31: 1122
[13] Xu G C, He H W, Guo F. J Electron Mater, 2009; 38: 273
[14] Xu G C, He H W, Guo F. J Mater Sci, 2009; 20: 276
[15] Chen C M, Huang C C. J Mater Res, 2008; 23: 1051
[16] Chen C M, Huang C C. J Alloys Compd, 2008; 461: 235
[17] Chen C M, Huang C C, Liao C N, Liou K M. J Electron Mater, 2007; 36: 760
[18] Chen C M, Chen L T, Lin Y S. J Electron Mater, 2007; 36: 168
[19] Tu K N, Chen C, Wu A T. J Mater Sci, 2007; 18: 269
[20] Jung K, Conrad H. J Mater Sci, 2004; 39: 1803
[21] Boettinger W J, Johnson C E, Bendersky L A, Moon K W, Williams M E, Stafford G R. Acta Mater, 2005; 53:5033

[1] 谷瑞成, 张健, 张明阳, 刘艳艳, 王绍钢, 焦大, 刘增乾, 张哲峰. 三维互穿结构SiC晶须骨架增强镁基复合材料制备及其力学性能[J]. 金属学报, 2022, 58(7): 857-867.
[2] 丁宗业, 胡侨丹, 卢温泉, 李建国. 基于同步辐射X射线成像液/固复层界面氢气泡的形核、生长演变与运动行为的原位研究[J]. 金属学报, 2022, 58(4): 567-580.
[3] 田志华, 张培根, 刘玉爽, 陆成杰, 丁健翔, 孙正明. MAX 相表面金属晶须自发生长现象的研究现状与展望[J]. 金属学报, 2022, 58(3): 295-310.
[4] 周丽君, 位松, 郭敬东, 孙方远, 王新伟, 唐大伟. 基于飞秒激光时域热反射法的微尺度Cu-Sn金属间化合物热导率研究[J]. 金属学报, 2022, 58(12): 1645-1654.
[5] 张志杰, 黄明亮. 原位研究Cu/Sn-37Pb/Cu微焊点液-固电迁移行为[J]. 金属学报, 2020, 56(10): 1386-1392.
[6] 宫声凯, 尚勇, 张继, 郭喜平, 林均品, 赵希宏. 我国典型金属间化合物基高温结构材料的研究进展与应用[J]. 金属学报, 2019, 55(9): 1067-1076.
[7] 吉华,邓运来,徐红勇,郭伟强,邓建峰,范世通. 焊接线能量对5182-O/HC260YD+Z异种材料CMT搭接接头组织与性能的影响[J]. 金属学报, 2019, 55(3): 376-388.
[8] 陈丽群, 邱正琛, 于涛. Ru对NiAl[100](010)刃型位错电子结构的影响[J]. 金属学报, 2019, 55(2): 223-228.
[9] 曹丽华, 陈胤伯, 史起源, 远杰, 刘志权. 合金元素对中温Sn-Ag-Cu焊料互连组织及剪切强度的影响[J]. 金属学报, 2019, 55(12): 1606-1614.
[10] 何贤美, 童六牛, 高成, 王毅超. Nd含量对磁控溅射Si(111)/Cr/Nd-Co/Cr薄膜结构与磁性的影响[J]. 金属学报, 2019, 55(10): 1349-1358.
[11] 任建强, 梁淑华, 姜伊辉, 杜翔. 原位(TiB2-TiB)/Cu复合材料组织与性能研究[J]. 金属学报, 2019, 55(1): 126-132.
[12] 黄明亮, 孙洪羽. 倒装芯片无铅凸点β-Sn晶粒取向与电迁移交互作用[J]. 金属学报, 2018, 54(7): 1077-1086.
[13] 张敏, 慕二龙, 王晓伟, 韩挺, 罗海龙. TA1/Cu/X65复合板焊接接头微观组织及力学性能[J]. 金属学报, 2018, 54(7): 1068-1076.
[14] 康慧君, 李金玲, 王同敏, 郭景杰. 定向凝固Al-Mn-Be合金初生金属间化合物相生长行为及力学性能[J]. 金属学报, 2018, 54(5): 809-823.
[15] 耿林, 吴昊, 崔喜平, 范国华. 基于箔材反应退火合成的TiAl基复合材料板材研究进展[J]. 金属学报, 2018, 54(11): 1625-1636.