Please wait a minute...
金属学报  2009, Vol. 45 Issue (3): 331-337    
  论文 本期目录 | 过刊浏览 |
Fe--ΣXi--C合金系超组元模型Zener两参数的修正
彭宁琦1;2;唐广波2;刘正东2;吴秀月1;2
1 昆明理工大学云南省新材料制备与加工重点实验室; 昆明 650093
2 钢铁研究总院结构材料研究所; 北京 100081
MODIFICATION OF ZENER'S TWO--PARAMETER IN THE SUPERELEMENT MODEL FOR Fe--Σ Xi--C ALLOY SYSTEMS
PENG Ningqi1;2;TANG Guangbo2;LIU Zhengdong2;WU Xiuyue1;2  
1 Key Laboratory of Advanced Materials of Yunnan Province; Kunming University of Science and Technology; Kunming 650093
2 Institute for Structural Materials; Central Iron and Steel Research Institute; Beijing 100081
引用本文:

彭宁琦 唐广波 刘正东 吴秀月. Fe--ΣXi--C合金系超组元模型Zener两参数的修正[J]. 金属学报, 2009, 45(3): 331-337.
, , , . MODIFICATION OF ZENER'S TWO--PARAMETER IN THE SUPERELEMENT MODEL FOR Fe--Σ Xi--C ALLOY SYSTEMS[J]. Acta Metall Sin, 2009, 45(3): 331-337.

全文: PDF(1101 KB)  
摘要: 

根据Aaronson提出的超组元模型, 借助Ae3的实验数据, 提出了修正的置换型元素 Xi(Xi=Si, Mn, Ni, Co, Mo, Al, Cu, Cr) 的Zener两参数, 修正中考虑了合金元素间的交互作用. 修正后的超组元模型的预测精度明显改善: Ae3计算值与实验值的标准差为10.8 ℃, 与Thermo--Calc计算值的标准差为2.35 ℃; Ae1计算值与实验值的标准差为6.8 ℃. 按照马氏体相变热力学的计算方法, 采用经修正的参数计算了马氏体相变开始温度Ms, 提高了Ms点的预测精度, 计算值与实验值的标准差为25.3 ℃.

关键词 相变热力学超组元模型相变平衡温度    
Abstract

On the basis of experimental value of Ae3, a modified superelement model has been developed by the modification of Zener's two--parameter for substitutional elements, such as Si, Mn, Ni, Co, Mo, Al, Cu and Cr, according to Aaronson's method of superelement model, in which the interactions between alloying elements have been taken into account. The prediction accuracy of the modified model has been greatly improved in comparison with the existing superelement models. The standard deviations between the Ae3 value calculated by the modified superelement model and measured Ae3, and Thermo--Calc calculated Ae3, are 10.8 and 2.35 ℃, respectively. The standard deviation between the experimental Ae1 and the Ae1 calculated by the superelement model with new Zener's two--parameter is 6.8 ℃. In accordance with the thermodynamics calculation approach of the transformation from austenite to martensite, the martensite start temperature, Ms, has also been calculated with the modified parameters, and the standard deviation between the experimental and calculated Ms values is 25.3 ℃.

Key wordsphase transformation    thermodynamics    superelement model    equilibrium transformation temperature
收稿日期: 2008-08-18     
ZTFLH: 

TG111.5

 
基金资助:

“十一五”国家科技支撑计划项目2006BAE03A08和2006BAE03A04资助

作者简介: 彭宁琦, 男, 1981年生, 硕士生

[1] Miettinen J. Calphad, 1998; 22: 231
[2] Zhu H T. Report of Postdoctoral Research, Shanghai JiaoTong University, 2002
(朱洪涛. 上海交通大学博士后报告. 2002)

[3] Chou K C, Chang Y A. Ber Bunsen–Ges Phys Chem, 1989; 93: 741
[4] Bichara C, Bergman C, Mathieu J C. Acta Metall, 1985; 33: 91
[5] Hashiguchi K, Kirkaldy J S, Fukuzumi P, Pavaskar V. Calphad, 1984; 8: 173
[6] Chang H B, Hsu T Y (Xu Z Y). Acta Metall, 1986; 34: 333
[7] Qu J B, Liu Z Y, Liu X H,Wang G D. Mater Sci Technol, 1998; 14: 380.
[8] Bhadeshia H K. Met Sci, 1981; 15: 178
[9] Zhang B, Zhang H B, Ruan X Y. J Shanghai JiaoTong Univ, 2003; 37: 10
(张斌, 张鸿冰, 阮雪榆. 上海交通大学学报, 2003; 37: 10)

[10] Liu Z Y, Xu Y B, Wang G D. Simulation and Prediction of the Evolution of Microstructure and Properties of Hot Rolled Steels. Shenyang: Northeastem University, 2004: 34
(刘振宇, 许云波, 王国栋. 热轧钢材组织-性能演变的模拟和预测. 沈阳: 东北大学出版社, 2004: 34)

[11] Aaronson H I, Domain H A, Pound G M. Trans Metall Soc AIME, 1966; 236: 768
[12] Zener C. Trans AIME, 1955; 203: 619
[13] Kaufman L, Clougherty E X,Weiss R J. Acta Metall, 1963; 11: 323
[14] Orr R L, Chipman J. Trans Metall Soc AIME, 1967; 239: 630
[15] Mogumov B M, Tomilin I A, ShvarsmanL A. Thermodynamics of Fe–C Alloys. Moscow: Metallurgy Press, 1972: 110
[16] Hsu T Y (Xu Z Y), Zhang H B, Luo S F. Acta Metall Sin, 1984; 32: 343
(徐祖耀, 张鸿冰, 罗守福. 金属学报, 1984; 32: 343)
[17] Hsu T Y. Materials Thermodynamics. Beijing: Science Press, 2005: 204
(徐祖耀. 材料热力学. 北京: 科学出版社, 2005: 204)

[18] Mou Y W, Hsu T Y(Xu Z Y). Acta Metall, 1986; 34: 325
[19] Mou Y W, Hsu T Y(Xu Z Y). Acta Metall Sin, 1987; 23: 329
(牟翊文, 徐祖耀. 金属学报. 1987; 23: 329 )
[20] Hsu T Y. Martensite Transformation and Martensite. Beijing: Science Press, 1980: 53
(徐祖耀. 马氏体和马氏体相变. 北京: 科学出版社, 1980: 53)
[21] Wray P J. Metall Trans, 1982; 13A: 125
[22] Dai Q X, Cheng X N, Yang Z Z. Mater Charact, 2004; 52: 349
[23] Byun T S. Acta Mater, 2003; 51: 3063
[24] Cheng X N, Dai Q X. Design and Control for Austenitic Steels. Beijing: Defense Industry Press, 2005: 37
(程晓农, 戴起勋. 奥氏体钢设计与控制. 北京: 国防工业出版社, 2005: 37)

[25] Xie J P, Li Q C, He Z M, Chen Q D. J Luoyang Inst Technol, 1997; 18(2): 6
(谢敬佩, 李庆春, 何镇明, 陈全德. 洛阳工学院学报, 1997; 18(2): 6)

[26] Central Iron and Steel Research Institute of Ministry of Metallurgical Industry. The Atlas of Super–Cooling Austenite Transformation Diagrams. Beijing: Metallurgical
Industry Press, 1979: 1
(冶金工业部钢铁研究总院. 钢的过冷奥氏体转变曲线图集. 北京: 冶金工业出版社, 1979: 1)

[27] Li M Y, Sun B R. Steel Technical Manual on Rolling Control and Control of Cooling. Beijing: Metallurgical Industry Press, 1989: 124
(李曼云, 孙本荣. 钢的控制轧制和控制冷却技术手册. 北京: 冶金工业出版社, 1989: 124)

[28] The No.1 Iron Factory, Benxi Iron and Steel Corporation, Tsinghua University. The Atlas of Super–Cooling Austenite Transformation Diagrams. Benxi: The No.1 Iron Factory Press, Benxi Iron and Steel Corporation, 1978: 1
(本溪钢铁公司第一炼钢厂, 清华大学机械系金属材料教研组. 钢的过冷奥氏体转变曲线. 本溪: 本溪钢铁公司
第一炼钢厂, 1978: 1)

[29] Zhang S Z. Atlas of Super–Cooling Austenite Transformation Diagrams. Beijing: Metallurgical Industry Press, 1993: 22
(张世中. 钢的过冷奥氏体转变曲线图集. 北京: 冶金工业出版社, 1993: 22)

[30] Harbin Research Institute of Welding of Ministry of Machine Building and Electronics Industry. CCT Atlas of Welding of Low Alloy Steels. Beijing: China Machine Press, 1990: 3
(机械电子工业部哈尔滨焊接研究所. 国产低合金钢焊接CCT图册. 北京: 机械工业出版社, 1990: 3)

[31] Japan Society for Irons & Steels. Atlas of Continuous Cooling Transformation Diagrams of Low Carbon Steels. Tokyo: Japan Society for Irons and Steels Press, 1992: 32
(日本钢铁学会. 低碳钢连续冷却转变图集. 东京: 日本钢铁学会出版社, 1992: 32)

[32] American Society for Metals. Atlas of Isothermal Transformation and Cooling Transformation Diagrams. Metals Park, Ohio: American Society for Metals Press, 1977: 1
[33] Breedies J F. Trans Metall Soc AIME, 1964; 230: 1583
[34] Aaronson H I, Domain H A. Trans Metall Soc AIME, 1966, 236: 781
[35] Walters F M, Wells C. Trans Metall Soc AIME, 1936; 24: 359
[36] Hansen M. Constitution of Binary Alloys. New York: McGraw–Hill, 1958: 960
[37] Kriz A, Poboril F. Int Iron Steel Inst, 1932; 126: 323
[38] You W, Bai B Z, Fang H S, Xie X S. Acta Metall Sin, 2004; 40: 1133
(由伟, 白秉哲, 方鸿生, 谢锡善. 金属学报, 2004; 40: 1133)

[1] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[3] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[4] 王寒玉, 李彩, 赵璨, 曾涛, 王祖敏, 黄远. 基于纳米活性结构的不互溶W-Cu体系直接合金化及其热力学机制[J]. 金属学报, 2023, 59(5): 679-692.
[5] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[6] 张月鑫, 王举金, 杨文, 张立峰. 冷却速率对管线钢中非金属夹杂物成分演变的影响[J]. 金属学报, 2023, 59(12): 1603-1612.
[7] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[8] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[9] 李小兵, 潜坤, 舒磊, 张孟殊, 张金虎, 陈波, 刘奎. W含量对Ti-42Al-5Mn-xW合金相转变行为的影响[J]. 金属学报, 2023, 59(10): 1401-1410.
[10] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[11] 高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.
[12] 孙毅, 郑沁园, 胡宝佳, 王平, 郑成武, 李殿中. 3Mn-0.2C中锰钢形变诱导铁素体动态相变机理[J]. 金属学报, 2022, 58(5): 649-659.
[13] 李伟, 贾兴祺, 金学军. 高强韧QPT工艺的先进钢组织调控和强韧化研究进展[J]. 金属学报, 2022, 58(4): 444-456.
[14] 陈维, 陈洪灿, 王晨充, 徐伟, 罗群, 李谦, 周国治. Fe-C-Ni体系膨胀应变能对马氏体转变的影响[J]. 金属学报, 2022, 58(2): 175-183.
[15] 皇甫顥, 王子龙, 刘永利, 孟凡顺, 宋久鹏, 祁阳. W1 - x Ir x 固溶合金几何结构、电子结构、力学和热力学性能的第一性原理计算[J]. 金属学报, 2022, 58(2): 231-240.