Please wait a minute...
金属学报  2009, Vol. 45 Issue (12): 1466-1472    
  论文 本期目录 | 过刊浏览 |
室温下铝合金表面Ce-Mn转化膜的制备及性能
张军军;李文芳;杜 军
华南理工大学材料科学与工程学院; 广州 510640
PREPARATION AND PERFORMANCE OF Ce–Mn CONVERSION COATING ON Al ALLOY SURFACE AT ROOM TEMPERATURE
ZHANG Junjun; LI Wenfang; DU Jun
College of Material Science and Engineering; South China University of Technology; Guangzhou 510641
引用本文:

张军军 李文芳 杜军. 室温下铝合金表面Ce-Mn转化膜的制备及性能[J]. 金属学报, 2009, 45(12): 1466-1472.
, , , , , . PREPARATION AND PERFORMANCE OF Ce–Mn CONVERSION COATING ON Al ALLOY SURFACE AT ROOM TEMPERATURE[J]. Acta Metall Sin, 2009, 45(12): 1466-1472.

全文: PDF(3418 KB)  
摘要: 

以薄膜厚度和耐点滴腐蚀时间作为衡量Ce-Mn转化膜性能的指标, 采用正交实验研究了室温下pH值为2.0时铝合金表面Ce-Mn转化处理液配方及成膜时间对转化膜性能的影响. 分别获得两种较佳工艺, 配方和成膜时间分别为: 10 g/L Ce(NO3)3+2 g/L KMnO4+0.06 g/L NaF,12 min; 7 g/L Ce(NO3)3+1 g/L KMnO4+0.06 g/L NaF, 9 min. 采用点滴腐蚀法、极化曲线和交流阻抗研究铝合金表面Ce-Mn转化膜的耐腐蚀性能; 采用硬度计、SEM和EDS研究转化膜的表面硬度、形貌及组成. 结果表明处理液中添加成膜促进剂NaF后, 使转化膜的成膜速率和耐腐蚀性能(耐点滴腐蚀时间)提高, 制备Ce-Mn转化膜后, 铝合金表面的显微硬度从纯Al时的HV72最大增大至HV532.

关键词 铝合金 Ce-Mn转化膜 正交实验 促进剂    
Abstract

NaF was used as the accelerant to accelerate the conversion coating formation on 6063 Al alloy in Ce(NO3)3 and KMnO4 solution. Orthogonal experiments were conducted to find out the optimal process for prepare Ce–Mn conversion coating on Al alloy surface. Coating thickness and anti–corrosion time were taken as the indexes of performance assessment. Two better solution components and coating formation times at room temperature and pH=2.0 were selected to be 10 g/L Ce(NO3)3+2 g/L KMnO4+0.06 g/L NaF, 12 min and 7 g/L Ce(NO3)3+1 g/L KMnO4+0.06 g/L NaF, 9 min. The anti–corrosion ability of coating was evaluated by dropping test, polarization curve and electrochemical impedance spectroscopy. The increase of ΔE (the different between pinhole corrosion and corrosion potentials) and the decrease of corrosion demonstrate that the anti–corrosion ability of 6063 Al alloy with Ce–Mn conversion coating is greatly enhanced since the cathodic current (ic) and anodic corrosion current (ia) decrease. Ce–Mn conversion coating serves as an effective barrier to prevent corrosion attack. Generally, lower C (Capacitance) points out relatively higher degree of surface homogeneity which yields an almost closed capacitive arc. The addition of NaF make C become less, conversion coating resistance (Rc) and charge transfer resistance (Rct) become higher. A thicker and denser coating was formed on the surace of l alloy, which presents a barrier to O2 or CO2 or Cl permeation, bring better protection to Al 6063 alloy. The surface hardness was determined by micro–hardness test, the micro–morphology, and compositions of coatings were analysed by SEM and EDS. With NaF added, the surface hardness becomes stronger. Formation time was also an important factor to prepare a high–quality coating, corrosion resistance of Ce–Mn conversion coating was more effective when formation time is 9 min than when it is 15 min. The results of orthogonal experiments show that the optimal coating processing is 7 g/L Ce(NO3)3+ 1 g/L KMnO4+0.06 g/L NaF, 9 min. The additioof NF can accelerate the coatig formation, increase the Ce and Mn content in coating and thus improve the coatig anti–corrosion performance. It is found that the surface icro–hardness increases from HV72 of pure Al surface to HV532 of Al alloy surface with Ce–Mn conversion coating.

Key wordsAl based alloy    Ce–Mn conversion coating    orthogonal experiment    accelerant
收稿日期: 2009-08-14     
ZTFLH: 

TG174.45

 
基金资助:

粤港关键领域重点突破资助项目2008Z012

作者简介: 张军军, 男, 1976年生, 博士生

[1] Zhang J T, Yang C Y, Pan L, Li C D. Acta Metall Sin, 2008; 44: 1372
(张金涛, 杨春勇, 潘亮, 李春东. 金属学报, 2008; 44: 1372)
[2] Wang H, Wang H W. Trans Nonferrous Met Soc Chin, 2004; 14 (suppl. 1): 166
[3] Chen N C, Ao H M, Zhan Z L. Mater Sci Forum, 2009; 610–613: 29
[4] Pohlein M, Bertran R U, Wolf M, Eldik R V. Anal Bioanal Chem, 2009; 394: 583
[5] Zhang S L, Zhang X L. Corros Sci Prot Technol, 2008; 20: 279
(张圣麟, 张小麟. 腐蚀科学与防护技术, 2008; 20: 279)
[6] Hamdy A S. Mater Lett, 2006; 60: 2633
[7] Yu H C, Chen B Z, Shi X C, Wu H Y, Li B. J Appl Electrochem , 2009; 39: 303
[8] Mishra A K, Balasubramaniam R. Corros Sci, 2007; 49: 1027
[9] Dabala M, Ramous E, Magrini M. Mater Corros, 2004; 55: 381
[10] Hu J M, Liu L, Zhang J Q, Cao C N. Chem J Chin Univ, 2006; 27: 1125
(胡吉明, 刘谅, 张鉴清, 曹楚南. 高等学校化学学报, 2006; 27: 1125)
[11] Hinton B R W, Arnott D R, Ryan N E. Appl Surf Sci, 1985; 22–23(5): 236
[12] Hasannejad H, Shahrabi T, Aliofkhazraei M. Rare Met, 2009; 28: 98
[13] Chen D C, Li W F, Gong W H, Wu G X, Huang M S, Liang Y Q. Chin J Nonferrous Met, 2008; 18: 1939
(陈东初, 李文芳, 龚伟惠, 吴桂香, 黄铭深, 梁奕清. 中国有色金属学报, 2008; 18: 1939)
[14] Yu X W, Zhou D R, Yin Z D, Zhou Y H. Chin J Nonferrous Met, 1999; 9: 73
(于兴文, 周德瑞, 尹钟大, 周育红. 中国有色金属学报, 1999; 9: 73)
[15] Decroly A, Petitjean J P. Surf Coat Technol, 2005; 194: 1
[16] Tjong S C, Huo H W. J Mater Eng Perform, 2009; 18: 88
[17] Yu X W, Cao C N, Yan C W, Lin H C, Zhou D R, Yin Z D. Acta Metall Sin, 2000; 36: 979
(于兴文, 曹楚南, 严川伟, 林海潮, 周德瑞, 尹钟大. 金属学报, 2000; 36: 979)
[18] Chen S, Chen X F, Liu C Y, Zhu L, Sun J Q. Mater Prot, 2003; 36(8): 33
(陈溯, 陈晓帆, 刘传烨, 朱莉, 孙际琪. 材料保护, 2003; 36(8): 33)
[19] Myers D, translated by Wu D C, Zhu P X, Wang L X, Gao X S. Surface, Interface, and Colloids: Principles and Applications. 2nd ed., Beijing: Chemical Industry Press, 2005: 136
(Myers D著, 吴大诚, 朱谱新, 王罗新, 高绪珊译. 表面、界面和胶体-原理及应用.第二版, 北京: 化学工业出版社, 2005: 136)
[20] Zhang K C, Zhang L H. Crystal Growth. Beijing: Science Press, 1981: 163
(张克从, 张乐惠 . 晶体生长. 北京: 科学出版社, 1981: 163)
[21] Hinton B R W. J Alloys Comp, 1992; 180: 15
[22] Palomino L E M, Suegama P H, Aoki I V, P´aszti Z, Melo H G D. Electrochim Acta, 2007; 52: 7496
[23] Liu S, Xu N N, Duan J M, Zeng Z O, Feng Z P, Xiao R. Corros Sci, 2009; 51: 1356
[24] Kosec T, Merl D K, Miloˇsev I. Corros Sci, 2008; 50: 1987
[25] Song F M, Jones D A, Kirk D W. Corrosion, 2005; 61: 145
[26] Hazzazi O A. J Appl Electrochem, 2007; 37: 933
[27] Hasenay D, ˇ Seruga M. J Appl Electrochem, 2007; 37: 1001

[1] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[2] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[3] 高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.
[4] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[5] 宋文硕, 宋竹满, 罗雪梅, 张广平, 张滨. 粗糙表面高强铝合金导线疲劳寿命预测[J]. 金属学报, 2022, 58(8): 1035-1043.
[6] 王春辉, 杨光昱, 阿热达克·阿力玛斯, 李晓刚, 介万奇. 砂型3DP打印参数对ZL205A合金铸造性能的影响[J]. 金属学报, 2022, 58(7): 921-931.
[7] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
[8] 田妮, 石旭, 刘威, 刘春城, 赵刚, 左良. 预拉伸变形对欠时效7N01铝合金板材疲劳断裂的影响[J]. 金属学报, 2022, 58(6): 760-770.
[9] 苏凯新, 张继旺, 张艳斌, 闫涛, 李行, 纪东东. 微弧氧化6082-T6铝合金的高周疲劳性能及残余应力松弛机理[J]. 金属学报, 2022, 58(3): 334-344.
[10] 王冠杰, 李开旗, 彭力宇, 张壹铭, 周健, 孙志梅. 高通量自动流程集成计算与数据管理智能平台及其在合金设计中的应用[J]. 金属学报, 2022, 58(1): 75-88.
[11] 赵婉辰, 郑晨, 肖斌, 刘行, 刘璐, 余童昕, 刘艳洁, 董自强, 刘轶, 周策, 吴洪盛, 路宝坤. 基于Bayesian采样主动机器学习模型的6061铝合金成分精细优化[J]. 金属学报, 2021, 57(6): 797-810.
[12] 孙佳孝, 杨可, 王秋雨, 季珊林, 包晔峰, 潘杰. 5356铝合金TIG电弧增材制造组织与力学性能[J]. 金属学报, 2021, 57(5): 665-674.
[13] 陈军洲, 吕良星, 甄良, 戴圣龙. AA 7055铝合金时效析出强化模型[J]. 金属学报, 2021, 57(3): 353-362.
[14] 刘刚, 张鹏, 杨冲, 张金钰, 孙军. 铝合金中的溶质原子团簇及其强韧化[J]. 金属学报, 2021, 57(11): 1484-1498.
[15] 李吉臣, 冯迪, 夏卫生, 林高用, 张新明, 任敏文. 非等温时效对7B50铝合金组织及性能的影响[J]. 金属学报, 2020, 56(9): 1255-1264.