Please wait a minute...
金属学报  2009, Vol. 45 Issue (12): 1435-1440    
  论文 本期目录 | 过刊浏览 |
对流和弥散相液滴运动对偏晶合金凝固的影响
赵九洲;李海丽;赵雷
中国科学院金属研究所; 沈阳 110016
EFFECTS OF CONVECTIONS AND MOTIONS OF MINORITY PHASE DROPLETS ON SOLIDIFICATION OF MONOTECTIC ALLOYS
ZHAO Jiuzhou; LI Haili; ZHAO Lei
Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
引用本文:

赵九洲 李海丽 赵雷. 对流和弥散相液滴运动对偏晶合金凝固的影响[J]. 金属学报, 2009, 45(12): 1435-1440.
, . EFFECTS OF CONVECTIONS AND MOTIONS OF MINORITY PHASE DROPLETS ON SOLIDIFICATION OF MONOTECTIC ALLOYS[J]. Acta Metall Sin, 2009, 45(12): 1435-1440.

全文: PDF(933 KB)  
摘要: 

偏晶合金非常广泛, 许多具有重要的工业应用前景, 但该类合金具有液态组元不混溶温度区间, 当均一的合金熔体冷却进入组元不混溶温度区间时, 它分解成两个液相, 即发生液--液相变, 因此, 极易形成偏析严重的组织, 这不仅限制了该类合金的制备, 也为其凝固理论研究带来极大困难. 研究表明, 偏晶合金液--液相变过程十分复杂, 影响 因素众多, 尤其是弥散相液滴运动和基体熔体对流使各影响因素相互混淆, 致使偏晶合金凝固组织演变过程研究极为困难. 综述了弥散相液滴运动和基体熔体对流对偏晶合金液--液相变过程的影响及研究现状.

关键词 偏晶合金液-液相变对流凝固    
Abstract

Many alloys show a phase diagram characterized by the appearance of a miscibility gap in the liquid state. Some of them have great potentials to be used in industry. But when a homogeneous, single–phase liquid is cooled into the miscibility gap, the components are no longer miscible and two liquid phases develop. Generally the liquid–liquid decomposition causes the formation of the microstructure with serios segregation. The microstructure evolution during the liquid—liquid phase transformation of monotectic alloys is a result of the common actions of manfactors. It is very complex, especially the convection of the matrix and the motion of the minority phase droplets migt mix thigs p and make it extremely difficult to ivestigate te solidification process of monotectic alloys. In this paper, the effects of convection and minority phase droplet motion on the solidification of monotectic alloys were introducedthe current situation of researces in this field was overviewed.

Key wordsmonotectic alloy    liquid-liquid phase transformation    convection    solidification    overview
收稿日期: 2009-04-23     
ZTFLH: 

TG113.12

 
基金资助:

国家自然科学基金项目u0837601, 50771097和50671111资助

作者简介: 赵九洲, 男, 满族, 1962年生, 研究员

[1] Zhao J Z. J Mater Sci Technol, 2002; 3: 197
[2] Liu Y, Guo J J, Jia J. Foundry, 2000; 49: 11
(刘源, 郭景杰, 贾均. 铸造, 2000; 49: 11)
[3] Zheng H X, Ma W Z, Guo X F. Rare Met Mater Eng, 2004; 33: 893
(郑红星, 马伟增, 郭学锋. 稀有金属材料与工程, 2004; 33: 893)
[4] Yang S, Huang W D. Mater Mech Eng, 2000; 24: 5
(杨森, 黄卫东. 机械工程材料, 2000; 24: 5)
[5] Zhao J Z, Ratke L. Z Metallkd, 1998; 89: 241
[6] Zhao J Z. Mater Sci Technol, 2001; 9: 154
(赵九洲. 材料科学与工艺, 2001; 9: 154)
[7] Zhao J Z, Hu Z Q. Acta Metall Sin, 2004; 40: 27
(赵九洲, 胡壮麒. 金属学报, 2004; 40: 27)
[8] Carlberg T, Fredriksson H. Metall Trans, 1982; 11A: 1665
[9] Granasy L, Ratke L. Scr Mater, 1993; 28: 1329
[10] Thieringer W K, Ratke L. Acta Metall, 1987; 35: 1237
[11] Heaby R B, Cahn J W. J Chen Phys, 1973; 58: 896
[12] Schaffer P L, Mathiesen R L, Arnberg L, Sabatino M D, Snigirev A. New J Phys, 2008; 10: 053001
[13] Li H L, Zhao J Z, Zhang Q X. Metall Mater Trans, 2008; 39A: 3308
[14] Zhao J Z. Mater Sci Eng, 2007; A454–455: 637
[15] Li H L, Zhao J Z, Li Z Y, He J. Acta Metall Sin, 2008; 44: 1081
(李海丽, 赵九洲, 李中原, 何杰. 金属学报, 2008; 44: 1081)
[16] Zhao J Z, Gao L L. Appl Phys Lett, 2005; 87: 131905
[17] Zhao J Z, Gao L L. J Mater Sci Technol, 2006; 22: 321
[18] Zhao J Z, Guo J J, Jia J. Trans Nonferrous Met Soc Chin, 1995; 5: 67
[19] Ratke L. In: Koster J N, Sani R L eds., Progress in Astronautics and Aeronautics, Vol.130, Washington, DC: AIAA, 1991: 661
[20] Ratke L, Thieringer W. Acta Metall, 1985; 33: 1793
[21] Zhao J Z, Guo J J, Jia J. Trans Nonferrous Met Soc China, 199; 5: 85
[22] Guo J J, Liu Y, Jia J, Su Y Q, Ding H S, Zhao J Z, Xue X. Scr Mater, 2001; 45: 1197
[23] Zhao J Z. PhD Thesis, Harbin Institute of Technology, 1994
(赵九洲. 哈尔滨工业大学博士学位论文, 1994)
[24] Gelles S H, Markworth A J. NASA TM78125, 1977
[25] Ratke L, Diefenbach S. Mater Sci Eng, 1995; R15: 263
[26] He J, Zhao J Z. Acta Metall Sin, 2006; 42: 67
(何杰, 赵九洲. 金属学报, 2006; 42: 67)
[27] Decarlo J L, Pirch R G. Metall Trans, 1984; 15A: 2155
[28] Foner S, Meniff E. Rev Sci Inst, 1968; 39: 171
[29] Zhang L, Wang E G, Zuo X W, He J C. Acta Metall Sin, 2008; 44: 165
(张林, 王恩刚, 左小伟, 赫冀成. 金属学报, 2008; 44: 165)
[30] Yasuda H, Ohnaka I, Fujimoto S. Mater Lett, 2004; 58: 911
[31] Yasuda H, Ohnaka I, Kawakami O. ISIJ Int, 2003; 43: 942
[32] Yasuda H, Ohnaka I, Fujimoto S. Scr Mater, 2006; 54: 527
[33] Zhao J Z, Jia J, Li Q C, Zhao Z M. Foundry, 1993; 8: 18
(赵九洲, 贾均, 李庆春, 赵忠民. 铸造, 1993; 8: 18)
[34] Jia J, Zhao J Z. Chin J Mech Eng, 1991; 4: 90
[35] Hao W X. Spec Cast & Nonferrous Alloys, 2004; 3: 22
(郝维新. 特种铸造及有色金属, 2004; 3: 22)
[36] Wang H P. Chin Sci Bull, 2004; 49: 322
[37] Ozawa S, Motegi T. Mater Lett, 2004; 58: 2548
[38] Cao C D, Wei B B. J Mater Sci Technol, 2002; 18: 73
[39] Li H L, Zhao J Z. Appl Phys Lett, 2008; 92: 241902
[40] Otto G, Frohbe G. In: 6th European Symposium on Materials Science Under Microgravity, Bordeaux, France: ESA–SP 256, 1987: 355
[41] Zhao J Z. Scr Mater, 2006; 54: 247
[42] Wang C P, Liu X J, Ohnuma I, Kainuma R, Ishida K. Science, 2002; 297: 990
[43] Bradley E, Banerji K. IEEE Trans Components Packag Manuf Technol, 1996; B19: 320

[1] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[4] 刘继浩, 周健, 武会宾, 马党参, 徐辉霞, 马志俊. 喷射成形M3高速钢偏析成因及凝固机理[J]. 金属学报, 2023, 59(5): 599-610.
[5] 张利民, 李宁, 朱龙飞, 殷鹏飞, 王建元, 吴宏景. 交流电脉冲对过共晶Al-Si合金中初生Si相偏析的作用机制[J]. 金属学报, 2023, 59(12): 1624-1632.
[6] 苏震奇, 张丛江, 袁笑坦, 胡兴金, 芦可可, 任维丽, 丁彪, 郑天祥, 沈喆, 钟云波, 王晖, 王秋良. 纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化[J]. 金属学报, 2023, 59(12): 1568-1580.
[7] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.
[8] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[9] 刘仁慈, 王鹏, 曹如心, 倪明杰, 刘冬, 崔玉友, 杨锐. 700℃热暴露对 β 凝固 γ-TiAl合金表面组织及形貌的影响[J]. 金属学报, 2022, 58(8): 1003-1012.
[10] 李闪闪, 陈云, 巩桐兆, 陈星秋, 傅排先, 李殿中. 冷速对高碳铬轴承钢液析碳化物凝固析出机制的影响[J]. 金属学报, 2022, 58(8): 1024-1034.
[11] 郭东伟, 郭坤辉, 张福利, 张飞, 曹江海, 侯自兵. 基于二次枝晶间距变化特征的连铸方坯CET位置判断新方法[J]. 金属学报, 2022, 58(6): 827-836.
[12] 丁宗业, 胡侨丹, 卢温泉, 李建国. 基于同步辐射X射线成像液/固复层界面氢气泡的形核、生长演变与运动行为的原位研究[J]. 金属学报, 2022, 58(4): 567-580.
[13] 吴国华, 童鑫, 蒋锐, 丁文江. 铸造Mg-RE合金晶粒细化行为研究现状与展望[J]. 金属学报, 2022, 58(4): 385-399.
[14] 张雷, 施韬, 黄火根, 张培, 张鹏国, 吴敏, 法涛. 铀基非晶复合材料的相分离与凝固序列研究[J]. 金属学报, 2022, 58(2): 225-230.
[15] 陈瑞润, 陈德志, 王琪, 王墅, 周哲丞, 丁宏升, 傅恒志. Nb-Si基超高温合金及其定向凝固工艺的研究进展[J]. 金属学报, 2021, 57(9): 1141-1154.