Please wait a minute...
金属学报  2009, Vol. 45 Issue (12): 1441-1445    
  论文 本期目录 | 过刊浏览 |
固态化合物对钢液非均质形核的触媒作用
潘宁1;宋波1;翟启杰2
1.北京科技大学冶金与生态工程学院; 北京 100083
2.上海大学材料科学与工程学院; 上海 200072
CATALYSIS ON HETEROGENEOUS NUCLEATION OF SOLID COMPOUNDS IN LIQUID STEEL
PAN Ning1; SONG Bo1; ZHAI Qijie2
1.School of Metallurgical and Ecological Engineering; University of Science and Technology Beijing; Beijing 100083
2. School of Materials Science and Engineering; Shanghai University; Shanghai 200072
引用本文:

潘宁 宋波 翟启杰. 固态化合物对钢液非均质形核的触媒作用[J]. 金属学报, 2009, 45(12): 1441-1445.
, , . CATALYSIS ON HETEROGENEOUS NUCLEATION OF SOLID COMPOUNDS IN LIQUID STEEL[J]. Acta Metall Sin, 2009, 45(12): 1441-1445.

全文: PDF(474 KB)  
摘要: 

对钢液中各种固态化合物基底与形核相(δ-Fe和γ-Fe)的价电子结构进行了计算, 基于静电作用理论和经验电子理论提出了基底和形核相之间的特征参量
Δρ, 并对Δρ与钢液非均质形核触媒作用的关系进行了分析和讨论.结果表明: 基底和形核相之间的特征参量Δρ越大, 非均质形核作用越好.

关键词 静电作用经验电子理论非均质形核钢液    
Abstract

Solid compounds added into liquid steel can be utilized as substrates for primary ferrite phase or primary austenite phase nucleation during solidification. The effect of solid compounds promoting heterogeneous nucleation can be interpreted as an electrostatic effect between substrates and nucleated phases, with heterogeneous nucleation being considered as caused by the free energy change due to the redistribution of free electrons at the interface of substrate and nucleated phase. In order to evaluate the electrostatic effect, Yu’s empirical electron theory was introduced. With concepts of lattice electron and atomic state hybridization brought forward by Yu, the bond length difference method was applied to calculate valence electron structures of substrates and nucleated phases. The electrostatic effect was quantified as a electron transfer rate at the interface of substrate and nucleated phase. Parameter Δρ was proposed to represent the electron transfer rate. In this study,23 compounds commonly found in liuid steel were selected as the substrates, along with δ–Fe and γ–Fas the nucleatd phases. The valence electron structures of sbstrates and nucleatephases were calculated on the basis of crystal structure data obtained by experimnts. Parameter Δρ between each substrate and δ–Fe/ γ–Fe was calculated from the valence eectron structures. The results show ha, as the parameter Δρ increases, the work of heterogeneous nucleation derived from experimental data decreases; the larger Δρ is, the more effective the substrate is for promoting nucleatio.

Key wordselectrostatic effect    empirical electron theory    heterogeneous nucleaton    liquid steel
收稿日期: 2009-05-25     
ZTFLH: 

TG111.4

 
基金资助:

国家自然科学基金资助项目50734008

作者简介: 潘宁, 男, 1980年生, 博士生

[1] Hu H Q. Solidification of Metals. Beijing: Metallurgical Industry Press, 1985: 84
(胡汉起. 金属凝固. 北京: 冶金工业出版社, 1985: 84)
[2] Tiller W, Takahashi T. Acta Metall, 1969; 17: 483
[3] Yu R H. Chin Sci Bull, 1978; 23: 217
(余瑞璜. 科学通报, 1978; 23: 217)
[4] Yu R H. Chin Sci Bull, 1981; 26: 206
(余瑞璜. 科学通报, 1981; 26: 206)
[5] Liang G F, Xu Z M, Qu D K, Song C J, Liu X Y, Li J G. J Shanghai Jiaotong Univ, 2005; 39: 1073
(梁高飞, 许振明, 瞿迪柯, 宋长江, 刘向阳, 李建国. 上海交通大学学报, 2005; 39: 1073)
[6] Liang G F, Song C J, Liu X Y, Xu Z M, Li J G. Rare Metal Mater Eng, 2005; 34: 1558
(梁高飞, 宋长江, 刘向阳, 许振明, 李建国. 稀有金属材料与工程, 2005; 34: 1558)
[7] Zhang R L. The Empirical Electron Theory of Solids and Molecules. Changchun: Jilin Science and Technology Press, 1993: 231
(张瑞林. 固体与分子经验电子理论. 长春: 吉林科学技术出版社, 1993: 231)
[8] Kohlhaas R, Dunner Ph, Schmitz–Pranghe N. Z Angew Phys, 1967; 23: 245
[9] Wyckoff R. Crystal Structures. New York: Interscience Publishers, 1963: 10
[10] Newnham R, de Haan Y. Z Kristallogr, 1962; 117: 235
[11] Barnighausen H, Schiller G. J Less–Common Met, 1985; 110: 385
[12] Kummerle E, Heger G. J Solid State Chem, 1999; 147: 485
[13] Aldebert P, Traverse J. Mater Res Bull, 1979; 14: 303
[14] Morosin B. Phys Rev, 1970B; 1: 236
[15] Storms E, Krikorian N. J Phys Chem, 1959; 63: 1747
[16] Brauer G, Esselborn R. Z Anorg Allg Chem, 1961; 309: 151
[17] Wright A, Leadbetter A. Philos Mag, 1975; 31: 1391
[18] Houska C. J Phys Chem Solids, 1965; 25: 359
[19] Taylor A, Doyle N. J Appl Crystallogr, 1971; 4: 103
[20] Rice C, Robinson W. Acta Crystallogr, 1977; 33B: 1342
[21] Abrahams S, Bernstein J. J Chem Phys, 1971; 55: 3206
[22] Storms E, McNeal R. J Phys Chem, 1962; 66: 1401
[23] Brauer G, Schnell W. J Less–Common Met, 1964; 6: 326
[24] Aldebert P, Traverse J. J Am Ceram Soc, 1985; 68: 34
[25] Huang C, Song B, Mao J H, Zhao P. Sci China, 2004; 34E: 737
(黄诚, 宋 波, 毛憬红, 赵沛. 中国科学, 2004; 34E: 737)
[26] Ershov G, Bychev V. Iz VUZ Chern Metall, 1975: 72
[27] Chernov B. Iz VUZ Chern Metall, 1983: 4
[28] Staronka A, Gotas W. Arch Eisenhuttenwes, 1979; 50: 237
[29] van Muu B, Fenzke H W, Neuhof G. Neue Hutte, 1984; 29: 128
[30] Bramfitt B. Metall Trans, 1970; 1: 1987
[31] Ohashi T, Fujii H, Nuri Y, Asano K. Trans ISIJ, 1977; 17:262
[32] Nakajima K, Hasegawa H, Khumkoa S, Mizoguchi S. Metall Mater Trans, 2003; 34B: 539
[33] Suzuki T, Inoue J, Koseki T. ISIJ International, 2007; 47:847

[1] 王垚,李春福,林元华. Cr对Fe-Cr合金耐蚀性能影响的电子理论研究[J]. 金属学报, 2017, 53(5): 622-630.
[2] 王赟; 钟云波; 任忠鸣; 王保军; 雷作胜; 张小伟 . 离心中间包内钢液流动的数值模拟[J]. 金属学报, 2008, 44(10): 1203-1208 .
[3] 尹小东; 黄宗泽; 顾文兵 . 真空脱碳过程的数学模拟研究[J]. 金属学报, 2005, 41(8): 876-880 .
[4] 李福燊; 金从进; 鲁雄刚; 周国治; 朱立新; 胡晓军; 李泽亚; 王峰 ; 沈强 . 钢液固体电解质脱氧体脱氧时的二次氧化现象[J]. 金属学报, 2004, 40(7): 673-676 .
[5] 薛正良; 王义芳; 王立涛; 李正邦; 张家雯 . 用小气泡从钢液中去除夹杂物颗粒[J]. 金属学报, 2003, 39(4): 431-434 .
[6] 李福shen; 鲁雄刚; 金从进 . 钢液的固体电解质无污染脱氧[J]. 金属学报, 2003, 39(3): 287-292 .
[7] 郑红霞; 李宝宽; 昌泽舟 . 全幅二段电磁制动连铸复合钢坯的模拟研究[J]. 金属学报, 2001, 37(8): 877-881 .
[8] 许振明; 李天晓; 周尧和 . 电磁过滤钢液中非金属夹杂物的运动速度和去除效率的理论分析[J]. 金属学报, 2001, 37(4): 423-428 .
[9] 黄军涛; 赫冀成 . 方坯结晶器内钢液凝固及电磁制动的数值模拟[J]. 金属学报, 2001, 37(3): 281-286 .
[10] 钱忠东; 李本文; 李东辉; 王恩刚; 赫冀成 . 电磁连铸复合式结晶器内钢液流场的数值模拟[J]. 金属学报, 2001, 37(11): 1223-1227 .
[11] 朱苗勇; 黄宗泽 . RH真空脱碳精炼过程的模拟研究[J]. 金属学报, 2001, 37(1): 91-94 .
[12] 朱苗勇; 黄宗泽 . RH真空精炼装置内钢液流动行为的数值模拟[J]. 金属学报, 2000, 36(11): 1175-1178 .
[13] 李福燊; 何洪鹏 . 钢液直接定铝传感器的研究[J]. 金属学报, 1999, 35(1): 70-72 .
[14] 李宝宽;赫冀成;贾光霖;高允彦. 薄板坯连铸结晶器内钢液流场电磁制动的模拟研究[J]. 金属学报, 1997, 33(11): 1207-1214.