Please wait a minute...
金属学报  2009, Vol. 45 Issue (11): 1336-1343    
  论文 本期目录 | 过刊浏览 |
定向凝固Ti--50Al合金组织演化及其片层取向控制
李新中1); 孙涛2);  彭鹏1);  苏彦庆1);  郭景杰1);  傅恒志1)
1) 哈尔滨工业大学材料科学与工程学院; 哈尔滨 150001
2) 哈尔滨工业大学机电工程学院; 哈尔滨 150001
STRUCTURE EVOLUTION OF DIRECTIONALLY SOLIDIFIED Ti--50Al ALLOY AND LAMELLAR ORIENTATION CONTROL
LI Xinzhong1); SUN Tao2);   PENG Peng1);    SU Yanqing1);   GUO Jingjie1);    FU Hengzhi1);
1) School of Materials Science and Engineering; Harbin Institute of Technology; Harbin 150001
2) School of Mechatronics Engineering; Harbin Institute of Technology; Harbin 150001
引用本文:

李新中 孙涛 彭鹏 苏彦庆 郭景杰 傅恒志. 定向凝固Ti--50Al合金组织演化及其片层取向控制[J]. 金属学报, 2009, 45(11): 1336-1343.
. STRUCTURE EVOLUTION OF DIRECTIONALLY SOLIDIFIED Ti--50Al ALLOY AND LAMELLAR ORIENTATION CONTROL[J]. Acta Metall Sin, 2009, 45(11): 1336-1343.

全文: PDF(3060 KB)  
摘要: 

对Ti-50Al(原子分数, %)合金在较宽的生长速率范围内进行定向凝固实验, 研究了生长速率对固/液界
面形态、微观组织演化及片层结构形成的影响. 发现合金在1-5 μm/s的速率范围内均以α胞晶单相生长,
最终形成全片层结构; 当生长速率达到10 μm/s时, 在初始凝固的较长距离内为α胞晶单相生长, 随着凝固的
进行, 胞晶间溶质逐渐富集, 晶间出现从液相析出的γ相, 最终不能形成全片层结构; 当生长速率大于
15 μm/s时, 合金以α枝晶生长, 枝晶间也出现γ相. 对各生长速率下形成的片层结构取向的
分析表明, 片层结构取向与定向凝固启动界面处铸态晶粒的取向的历史有关. 根据上述规律, 以Ti-50Al合金
为籽晶和主体合金, 选择确保α单相凝固的生长速率8 μm/s, 进行片层取向控制, 最终获得取向与生长方向
一致的全片层结构.

关键词 Ti-50Al合金定向凝固组织演化片层    
Abstract

Ti-Al alloys as the high temperature structural material with the most prospective development are
widely used in aerospace. Further study should been conducted on their formation of fully lamellar structure in
directional solidification and lamellar orientation control for a good balance of mechanical properties. Directional solidification
experiments were conducted for Ti-50Al (atomic fraction, %) alloy in a relatively wide range of growth rates. The
effects of growth rate on interfacial morphology, microstructure evolution and formation of lamellar structure were
investigated. A single-phase growth of cellular α was observed in a growth rate range of 1-5 μm/s, and finally a fully
lamellar structure was formed. When the growth rate reached 10 μm/s, a single-phase growth of cellular α was
also observed during a relatively long distance after initial solidification, but as solidification proceeded, intercellular
solute enrichment became so severe that γ phase precipitated from liquid appeared between α cells, and finally a full
lamella can not be formed. When the growth rate was higher than 15 μm/s, a dendritic growth of α phase and γ
phase between α dendrites were observed.  The analysis on the final lamellar orientations at different growth rates
showed that the lamellar orientation is history-dependant on the orientation of as-cast grain at the started interface of direcitonal
solidification. Based on the above rules, Ti-50Al alloy, also as seed, was solidified under controlling the
lamellar orientation, and a relatively low growth rate of 8 μm/s was chosen to ensure a single-phase growth of α.
Finally, a fully lamellar structure with an orientation parallel to the growth direction was obtained.

Key wordsTi--50Al alloy    directional solidification    structure evolution    lamella
收稿日期: 2009-04-27     
ZTFLH: 

TG249.9

 
基金资助:

国家自然科学基金项目50771041和50801019, 中国博士后基金项目20080430909, 黑龙江省博士后经费项目LBH-Z08127和哈尔滨工业大学优秀青年教师培养计划项目HITQNJS.2008.018资助

作者简介: 李新中, 男, 1979年生, 讲师, 博士

[1] Okamoto H. J Phase Equilib, 1993; 14: 120
[2] Kim Y W. JOM, 1994; 4: 14
[3] Yamaguchi M, Johnson D R, Lee H N, Inui H. Intermetallics, 2000; 8: 511
[4] Johnson D R, Masuda Y, Inui H, Yamaguchi M Y. Mater Sci Eng, 1997; A239–240: 577
[5] Kim S E, Lee Y T, Oh M H, Inui H, Yamaguchi M. Intermetallics, 2000; 8: 399
[6] Johnson D R, Inui H, Yamaguchi M. Acta Mater, 1996;44: 2523
[7] Johnson D R, Inui H, Muto S, Omiya Y, Yamanaka T. Acta Mater, 2006; 54: 1077
[8] Ramanujan R V, Bi Y J, Xu Q, Abell J S. Scr Metall Mater, 1994; 30: 719
[9] Bi Y J, Abell J S. Scr Metall Mater, 1994; 31: 751
[10] Oliver B F, Kad B. J Less–Common Metals, 1991; 168: 81
[11] Liu Y C, Yang G C, Guo X F, Huang J, Zhou Y H. J Cryst Growth, 2001; 222: 645
[12] Liu Y C, Yang G C, Zhou Y H. J Crystal Growth, 2002; 240: 603
[13] Fan J L, Li X Z, Guo J J, Su Y Q, Fu H Z. Acta Metall Sin, 2009; 45: 302
(樊江磊, 李新中, 郭景杰, 苏彦庆, 傅恒志. 金属学报, 2009; 45: 302)

[14] Li X Z, Fan J L, Guo J J, Su Y Q, Fu H Z. Acta Metall Sin, 2009; 45: 308
(李新中, 樊江磊, 郭景杰, 苏彦庆, 傅恒志. 金属学报, 2009; 45: 308)

[15] Yamaguchi M, Johnson D R, Lee H N, Inui H. Intermetallics, 2000; 8: 511
[16] Xiao W. Master Dissertation, Harbin Institute Technology, 2008
(肖伟. 硕士学位论文, 哈尔滨工业大学, 2008)

[17] Zhang C J, Xu D M, Fu H Z. J Cryst Growth, 2008; 310: 3604

 

[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[3] 苏震奇, 张丛江, 袁笑坦, 胡兴金, 芦可可, 任维丽, 丁彪, 郑天祥, 沈喆, 钟云波, 王晖, 王秋良. 纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化[J]. 金属学报, 2023, 59(12): 1568-1580.
[4] 李小兵, 潜坤, 舒磊, 张孟殊, 张金虎, 陈波, 刘奎. W含量对Ti-42Al-5Mn-xW合金相转变行为的影响[J]. 金属学报, 2023, 59(10): 1401-1410.
[5] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[6] 陈瑞润, 陈德志, 王琪, 王墅, 周哲丞, 丁宏升, 傅恒志. Nb-Si基超高温合金及其定向凝固工艺的研究进展[J]. 金属学报, 2021, 57(9): 1141-1154.
[7] 张小丽, 冯丽, 杨彦红, 周亦胄, 刘贵群. 二次枝晶取向对镍基高温合金晶粒竞争生长行为的影响[J]. 金属学报, 2020, 56(7): 969-978.
[8] 张健,王莉,王栋,谢光,卢玉章,申健,楼琅洪. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55(9): 1077-1094.
[9] 许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.
[10] 陈占兴,丁宏升,陈瑞润,郭景杰,傅恒志. 脉冲电流作用下TiAl合金凝固组织演变及形成机理[J]. 金属学报, 2019, 55(5): 611-618.
[11] 方辉,薛桦,汤倩玉,张庆宇,潘诗琰,朱鸣芳. 定向凝固糊状区枝晶粗化和二次臂迁移的实验和模拟[J]. 金属学报, 2019, 55(5): 664-672.
[12] 唐文书,肖俊峰,李永君,张炯,高斯峰,南晴. 再热恢复处理对蠕变损伤定向凝固高温合金γ′相的影响[J]. 金属学报, 2019, 55(5): 601-610.
[13] 杨燕, 杨光昱, 罗时峰, 肖磊, 介万奇. Mg-14.61Gd合金的定向凝固组织及生长取向[J]. 金属学报, 2019, 55(2): 202-212.
[14] 金浩, 贾清, 刘荣华, 线全刚, 崔玉友, 徐东生, 杨锐. 籽晶制备及Ti-47Al合金PST晶体取向控制[J]. 金属学报, 2019, 55(12): 1519-1526.
[15] 刘林, 孙德建, 黄太文, 张琰斌, 李亚峰, 张军, 傅恒志. 高梯度定向凝固技术及其在高温合金制备中的应用[J]. 金属学报, 2018, 54(5): 615-626.