Please wait a minute...
金属学报  2009, Vol. 45 Issue (10): 1217-1224    
  论文 本期目录 | 过刊浏览 |
一种新型高强抗热腐蚀DZ68镍基高温合金的研究
刘恩泽1;2; 孙树臣1; 涂赣峰1;郑 志2; 宁礼奎2; 张凌峰3
1. 东北大学材料与冶金学院; 沈阳 110004
2. 中国科学院金属研究所; 沈阳 110016
3. 中航工业西安航空发动机 (集团) 有限公司; 西安 710021
STUDY OF A NEW-TYPE HIGH STRENGTH Ni--BASED SUPERALLOY DZ68 WITH GOOD HOT CORROSION RESISTANCE
LIU Enze 1; 2; SUN Shunchen 1; TU Ganfeng1; ZHENG Zhi2; NING Likui2; ZHANG Lingfeng 3
1. School of Materials and Metallurgy; Northeastern University; Shenyang 110004
2. Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
3. AVIC Xi'an Aero--Engine (Group) Ltd.; Xi'an 710021
引用本文:

刘恩泽 孙树臣 涂赣峰 郑 志 宁礼奎 张凌峰. 一种新型高强抗热腐蚀DZ68镍基高温合金的研究[J]. 金属学报, 2009, 45(10): 1217-1224.
. STUDY OF A NEW-TYPE HIGH STRENGTH Ni--BASED SUPERALLOY DZ68 WITH GOOD HOT CORROSION RESISTANCE[J]. Acta Metall Sin, 2009, 45(10): 1217-1224.

全文: PDF(3055 KB)  
摘要: 

研究了一种新型高强抗热腐蚀DZ68合金, 运用低偏析技术设计了DZ68合金的成分, 利用OM, SEM和XRD等研究了DZ68合金铸态、热处理态的微观组织. 研究了DZ68合金拉伸、持久性能和抗热腐蚀性能, 并与DZ125和IN738合金进行了比较. 结果表明: 铸态DZ68合金组织由γ, γ', (γ+γ')共晶、$M$C型碳化物和少量硼化物组成, 热处理后的组织由γ, γ', MC和M23C6型碳化物组成; DZ68合金的拉伸性能和持久性能与DZ125合金相当, 抗热腐蚀性能与IN738合金相当, 并具有良好的组织稳定性.

关键词 DZ68合金 拉伸性能 持久性能 抗热腐蚀性能    
Abstract

In order to meet the requirements of marine gas turbine blade materials, a new–type directional solidification Ni–based superalloy named DZ68 was developed. The alloy composition was designed by low segregation technology. Its nominal chemical composition (mass fraction, %) is C
0.05, Cr 12.0, Mo 1.0, W 5.0, Co 8.5, Al 5.3, Ti 0.5, Ta 5.0, Re 2.0, B 0.01, and balance is Ni. The microstructures of as–cast DZ68 alloy and after heat treatment states were analyzed by OM, SEM and XRD. The tensile, rupture and hot corrosion resistance properties of DZ68 alloy were compared with
DZ125 and IN738 alloys. Results show that the microstructure of as–cast DZ68 alloy is composed of  γ, γ', (γ+γ') eutectics, MC type carbides and a few borides. After heat treatment, the microstructureof DZ68 alloy is composed of  γ, γ' and carbides. The carbides are mainly MC and M23C6. The tensile strength of DZ68 alloy decreases slightly with the increase of temperature, and reaches its minimum value at 700℃. When the temperature is higher than 700℃, the tensile stregth increases so evidently that reaches its maximum t oce at 760 ℃, But whethe temperature is higher than 760 ℃its tensile strength decreases obviously. It is well recognized the relatioship of the tensile strength of DZ68 alloy with temperature is abnormal, similar to that of its yield strength but oposite to that of its plasticity.  The tensile and rupture properties of DZ68 alloy are nearly the same as those of DZ125 alloy and its hot corrosion resistance property is nearly the same as that of IN738 alloy under the same conditions.

Key wordsDZ68 alloy    tensile property    rupture property    hot corrosion resistance
收稿日期: 2009-04-09     
ZTFLH: 

TG146.1

 
作者简介: 刘恩泽, 男, 1976年生, 助理研究员, 博士生
[1] Liu X W, Huang J F. J Chongqing Inst Technol, 2000; 14(1): 48 (刘筱薇, 黄进峰. 重庆工学院学报, 2000; 14(1): 48) [2] Gurrappa I. Oxid Met, 1999; 51: 353 [3] Huang Q Y, Li H K, Guo J T. Superalloy. Beijing: Metallurgical Industry Press, 2000: 115 (黄乾尧, 李汉康, 郭建亭. 高温合金. 北京: 冶金工业出版社, 2000: 115) [4] Stringer J. Mater Sci Technol, 1987; 3: 482 [5] Li M S. High Temperature Corrosion of Metal. Beijing: Metallurgical Industry Press, 2001: 34 (李美栓. 金属的高温腐蚀. 北京: 冶金工业出版社, 2001: 34) [6] Sidhu R K, Ojo O A, Chaturvedi M C. J Mater Sci, 2008; 43: 3612 [7] Zhou Y Z, Volek A, Green N R. Acta Mater, 2008; 56: 2631 [8] Gordon A P, Trexler M D, Neu R W. Acta Mater, 2007; 55: 3375 [9] Wright I G, Gibbons T B. Int J Hydrogen Energy, 2007; 32: 3610 [10] Zhu Y X, Zhang S N, Zhang T X, Zhang J H, Hu Z Q, Xie X S, Shi C X. In: Antolovich S D, Stusrud R W, Mackay R A, Anton D L, Khan T, Kissinger R D, Klarstrom D L eds., Superalloys 1992, PA: TMS, 1992: 145 [11] Shi C X, Yan M G, Zhu Z Q. China Aeronautical Materials Handbook. Beijing: Standards Press of China, 2001: 550 (师昌绪, 颜鸣皋, 朱之琴. 中国航空材料手册. 北京: 中国标准出版社, 2001: 550) [12] Shi C X, Lu D, Rong K. Forty Years of China Superalloy. Beijing: Chinese Science and Technology Press, 1996: 8 (师昌绪, 陆达, 荣科. 中国高温合金四十年. 北京: 中国科学技术出版社, 1996: 8) [13] Sun M C. Mechanics Property of Metal. Harbin: Harbin Institute of Technology Press, 2005: 240 (孙茂才. 金属力学性能. 哈尔滨: 哈尔滨工业大学出版社, 2005: 240) [14] Ma C D, Huang Z H,Wang Q R. Aeronautical Engine Materials Handbooks for Designation. Beijing: Metallurgical Indusry Press, 1989: 61 (马翠娣, 黄志豪, 王庆如. 航空发动机设计用材料数据手册. 北京: 冶金工业出版社, 1989: 61) [15] Ning L K, Zheng Z, Tan Y, Liu E Z, Tong J, Yu Y S,Wang H. Acta Metall Sin, 2009; 45: 161 (宁礼奎, 郑 志, 谭 毅, 刘恩泽, 佟 健, 于永泗, 王 华. 金属学报, 2009; 45: 161) [16] Yu Z F, Zheng Z, Liu E Z, Yu Y S, Zhu Y X. J Chin Soc Corros Prot, 2008; 28: 277 (于忠锋, 郑 志, 刘恩泽, 于永泗, 朱耀宵. 中国腐蚀与防护学报, 2008; 28: 277)
[1] 王迪, 贺莉丽, 王栋, 王莉, 张思倩, 董加胜, 陈立佳, 张健. Pt-Al涂层对DD413合金高温拉伸性能的影响[J]. 金属学报, 2023, 59(3): 424-434.
[2] 张子轩, 于金江, 刘金来. 镍基单晶高温合金DD432的持久性能各向异性[J]. 金属学报, 2023, 59(12): 1559-1567.
[3] 孙腾腾, 王洪泽, 吴一, 汪明亮, 王浩伟. 原位自生2%TiB2 颗粒对2024Al增材制造合金组织和力学性能的影响[J]. 金属学报, 2023, 59(1): 169-179.
[4] 赵晓峰, 李玲, 张晗, 陆杰. 热障涂层高熵合金粘结层材料研究进展[J]. 金属学报, 2022, 58(4): 503-512.
[5] 刘先锋, 刘冬, 刘仁慈, 崔玉友, 杨锐. Ti-43.5Al-4Nb-1Mo-0.1B合金的包套热挤压组织与拉伸性能[J]. 金属学报, 2020, 56(7): 979-987.
[6] 余晨帆, 赵聪聪, 张哲峰, 刘伟. 选区激光熔化316L不锈钢的拉伸性能[J]. 金属学报, 2020, 56(5): 683-692.
[7] 李源才, 江五贵, 周宇. 纳米孔洞对单晶/多晶Ni复合体拉伸性能的影响[J]. 金属学报, 2020, 56(5): 776-784.
[8] 王希,刘仁慈,曹如心,贾清,崔玉友,杨锐. 冷却速率对β凝固γ-TiAl合金硼化物和室温拉伸性能的影响[J]. 金属学报, 2020, 56(2): 203-211.
[9] 郭小童, 郑为为, 李龙飞, 冯强. 冷却速率导致的薄壁效应对K465合金显微组织和持久性能的影响[J]. 金属学报, 2020, 56(12): 1654-1666.
[10] 刘征,刘建荣,赵子博,王磊,王清江,杨锐. 电子束快速成形制备TC4合金的组织和拉伸性能分析[J]. 金属学报, 2019, 55(6): 692-700.
[11] 任德春, 苏虎虎, 张慧博, 王健, 金伟, 杨锐. 冷旋锻变形对TB9钛合金显微组织和拉伸性能的影响[J]. 金属学报, 2019, 55(4): 480-488.
[12] 陈胜虎, 戎利建. Ni-Fe-Cr合金固溶处理后的组织变化及其对性能的影响[J]. 金属学报, 2018, 54(3): 385-392.
[13] 李冬冬, 钱立和, 刘帅, 孟江英, 张福成. Mn含量对Fe-Mn-C孪生诱发塑性钢拉伸变形行为的影响[J]. 金属学报, 2018, 54(12): 1777-1784.
[14] 席明哲, 吕超, 吴贞号, 尚俊英, 周玮, 董荣梅, 高士友. 连续点式锻压激光快速成形TC11钛合金的组织和力学性能[J]. 金属学报, 2017, 53(9): 1065-1074.
[15] 陈瑞, 许庆彦, 郭会廷, 夏志远, 吴勤芳, 柳百成. Al-7Si-Mg铝合金拉伸过程应变硬化行为及力学性能模拟研究[J]. 金属学报, 2017, 53(9): 1110-1124.