Please wait a minute...
金属学报  2008, Vol. 44 Issue (1): 85-90     
  论文 本期目录 | 过刊浏览 |
接触模型对搅拌摩擦焊接数值模拟的影响
张昭;张洪武
大连理工大学工程力学系
EFFECT OF CONTACT MODEL ON NUMERICAL SIMULATION OF FRICTION STIR WELDING
大连理工大学工程力学系
引用本文:

张昭; 张洪武 . 接触模型对搅拌摩擦焊接数值模拟的影响[J]. 金属学报, 2008, 44(1): 85-90 .

全文: PDF(301 KB)  
摘要: 在完全热力耦合搅拌摩擦焊接数值模型中采用两种接触模型——经典的 Coulomb接触模型和修正的Coulomb接触模型,模拟了搅拌摩擦焊接过程, 以分析不同接触模型对搅拌摩擦焊接过程数值模拟的影 响. 结果表明,对于低转速的搅拌摩擦焊接,两种模型的 预测结果区别不大;但是对于高转速, 由于界面摩擦剪切应力没有上限,采用经典的Coulomb 接触模型无法模拟,需采用修正的Coulomb接触模型. 搅拌头转速的增加不会改变搅拌摩擦焊接技术固态连 接的本质. 当采用高转速时,焊接构件上、下表面的 变形趋于均匀,有利于得到均匀的显微结构.
关键词 搅拌摩擦焊接数值模拟接触模型    
Abstract:Two contact models, including the classical Coulomb contact model and the modified Coulomb contact model, are used in a fully coupled thermo-mechanical numerical model of friction stir welding to study the effect of the different contact models on the simulation of friction stir welding process. Results indicate that there are little differences between the numerical results of the two contact models for friction stir welding in low rotating speed. But for the friction stir welding in high rotating speed, the classical Coulomb contact model fails to simulate the friction stir welding process due to no limit of shear stress at the interface, which is not considered to be a problem when the modified Coulomb contact model is used. The increase of the rotating speed does not change the nature of solid joining in friction stir welding. When higher rotating speed is adopted, the material deformations on the top and bottom surfaces become more similar, which lead to more uniform microstructures. So, it is recommended to adopt higher rotating speed in a real friction stir welding.
Key wordssynthesizing and processing techniques    friction stir welding    numerical simulation    contact model
收稿日期: 2007-05-09     
ZTFLH:  TG402  
[1]Mishra R S,Ma Z Y.Mater Sci Eng,2005;R50:1
[2]Ericsson M,Sandstr(?)m R.Int J Fatigue,2003;25:1379
[3]Peel M,Steuwer A,Preuss M,Withers P J.Acta Mater, 2003;51:4791
[4]Gharacheh M A,Kokabi A H,Daneshi G H,Shalchi B, Sarrafi R.Int J Mach Tools Manuf,2006;46:1983
[5]James M N,Hattingh D G,Bradley G R.Int J Fatigue, 2003;25,1389
[6]Kim Y G,Fujii H,Tsumura T,Komazaki T,Nakata K. Mater Lett,2006;60:3830
[7]Hassan Kh A A,Prangness P B,Norman A F,Price D A, Williams S W.Sci Technol Weld Joining,2003;8:257
[8]Attallah M M,Salem H G.Mater Sci Eng,2005;A391: 51
[9]Reynolds A P,Tang W,Khandkar Z,Khan J A,Lindner K.Sci Technol Weld Joining,2005;10:190
[10]Feng J C,Chen Y C,Liu H J.Mater Sci Technol,2006; 22(1):86
[11]Ren S R,Ma Z Y,Chen L Q,Zhang Y Z.Acta Metall Sin, 2007;43:225 (任淑荣,马宗义,陈礼清,张玉政.金属学报,2007;43:225)
[12]Zhang H W,Zhang Z,Chen J T.J Mater Process Technol, 2007;183:62
[13]Zhang Z,Zhang H W.Chin J Mater Res,2006;20:504 (张昭,张洪武.材料研究学报,2006;20:504)
[14]Liu H J,Pan Q,Kong Q W,Tang X D,Su L,Li X J,Sun J B,Yang G F.Weld Joining,2007;(2):7 (刘会杰,潘庆,孔庆伟,唐旭东,苏琳,李学军,孙静波,杨国锋.焊接,2007;(2):17)
[15]Wang J H,Yao S,Wei L W,Qi X H.Trans Chin Weld Inst,2000;21(4):61 (汪建华,姚舜,魏良武,戚新海.焊接学报,2000;21(4):61)
[16]Wang D Y,Feng J C,Wang P F.Trans Chin Weld Inst, 2005;26(3):25 (王大勇,冯吉才,王攀峰.焊接学报,2005;26(3):25)
[17]Han X H,Wang X J.Electron Weld Mach,2006;36(11): 48 (韩晓辉,王希靖.电焊机,2006;36(11):48)
[18]Zhang Z,Zhang H W.Int J Adv Manuf Technol,DOI: 10.100T/s00170-007-0971-6
[19]Zhao Y H,Lin S B,He Z Q,Wu L.Sci Technol Weld Joining,2006;11:178
[20]Schmidt H,Hattel J.Modell Simul Mater Sci Eng,2005; 13:77
[21]Buffa G,Hua J,Shivpuri R,Fratini L.Mater Sci Eng, 2006;A419:389
[22]Dong P,Lu F,Hong J K,Cao Z.Sci Technol Weld Join- ing,2001;6:281
[23]Bastier A,Maitournam M H,Dang Van K,Roger F.Sci Technol Weld Joining,2006;11:278
[24]Zhang H W,Zhang Z.J Mater Sci Technol,2007;23:73
[25]HKS Co.Ltd.ABAQUS User Manual.Version 6.4,2003
[26]Guerra M,Schmidt C,McClure J C,Murr L E,Nunes A C.Mater Charact,2003;49:95
[27]Zhang H W,Zhang Z.In:Hu P,Reddy J N,eds.,Int Conf on Enhancement and Promotion of Computational Meth- ods in Engineering Science and Mechanics,Changchun: Jinlin University press,2006:52
[28]Zhang Z,Zhang H W.Acta Metall Sin,2006;42:998 (张昭,张洪武.金属学报,2006;42:998)
[1] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[3] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[4] 周小宾, 赵占山, 汪万行, 徐建国, 岳强. 渣-金界面气泡夹带行为数值物理模拟[J]. 金属学报, 2023, 59(11): 1523-1532.
[5] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[6] 胡龙, 王义峰, 李索, 张超华, 邓德安. 基于SH-CCT图的Q345钢焊接接头组织与硬度预测方法研究[J]. 金属学报, 2021, 57(8): 1073-1086.
[7] 李子晗, 忻建文, 肖笑, 王欢, 华学明, 吴东升. 热导型等离子弧焊电弧物理特性和熔池动态行为[J]. 金属学报, 2021, 57(5): 693-702.
[8] 杨勇, 赫全锋. 高熵合金中的晶格畸变[J]. 金属学报, 2021, 57(4): 385-392.
[9] 刘明, 严富文, 高诚辉. 渐进法向力对金属材料微米划痕响应的影响[J]. 金属学报, 2021, 57(10): 1333-1342.
[10] 王富强, 刘伟, 王兆文. 铝电解槽中局部阴极电流增大对电解质-铝液两相流场的影响[J]. 金属学报, 2020, 56(7): 1047-1056.
[11] 刘继召, 黄鹤飞, 朱振博, 刘阿文, 李燕. 氙离子辐照后Hastelloy N合金的纳米硬度及其数值模拟[J]. 金属学报, 2020, 56(5): 753-759.
[12] 王波,沈诗怡,阮琰炜,程淑勇,彭望君,张捷宇. 冶金过程中的气液两相流模拟[J]. 金属学报, 2020, 56(4): 619-632.
[13] 许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.
[14] 戴培元,胡兴,逯世杰,王义峰,邓德安. 尺寸因素对2D轴对称模型计算不锈钢管焊接残余应力精度的影响[J]. 金属学报, 2019, 55(8): 1058-1066.
[15] 张清东, 林潇, 刘吉阳, 胡树山. Q&P钢热处理过程有限元法数值模拟模型研究[J]. 金属学报, 2019, 55(12): 1569-1580.