Please wait a minute...
金属学报  2008, Vol. 44 Issue (1): 79-84     
  论文 本期目录 | 过刊浏览 |
吹氩板坯连铸结晶器内钢/渣界面行为的数值模拟
曹娜;朱苗勇
东北大学材料与冶金学院
Numerical Simulation for the Interfacial Behavior of Steel and Slag in a Slab Continuous Casting Mold with Blowing Argon Gas
Na CAO
东北大学材料与冶金学院
引用本文:

曹娜; 朱苗勇 . 吹氩板坯连铸结晶器内钢/渣界面行为的数值模拟[J]. 金属学报, 2008, 44(1): 79-84 .
, . Numerical Simulation for the Interfacial Behavior of Steel and Slag in a Slab Continuous Casting Mold with Blowing Argon Gas[J]. Acta Metall Sin, 2008, 44(1): 79-84 .

全文: PDF(520 KB)  
摘要: 利用VOF方法和Lagrange两相流模型描述了吹氩结晶器内钢/渣界面 行为, 并用水模型实验检验了数值模拟结果. 在此基础上考察了吹氩量、拉速、结晶器宽度、水口浸入深度及气泡尺寸对钢 /渣界面卷混的影响规律. 结果表明:拉速为1.8 m/min时, 增大吹氩量, 结晶器的上回流区逐渐消失, 气泡对界面的扰动则不断加剧;吹氩量一定时, 拉速由1.2 m/min增至2.2 m/min的过程中, 气泡的冲 击深度增加, 氩气泡对钢液流型和界面形状的影响减弱; 增加水口浸入深度对抑制吹氩下界面波动作 用明显, 而结晶器宽度对此影响较小; 气泡尺寸显著影响钢/渣界面行为.
关键词 连铸结晶器吹氩    
Abstract:A mathematical model to describe the interfacial behavior between fluid steel and molten slag layer in a slab continuous casting mold with blowing argon gas was developed, and the prediction was validated by the water model. The influences of casting speed, argon gas volume flowrate, mold width, submergence depth of SEN (Submerged Entry Nozzle) and bubble size on interfacial behavior were numerically investigated. The results show that given a casting speed 1.8m/min, the upper circulating flow in the mold gradually disappears and the interfacial uneven disturbed by argon bubbles is gradually evident with the increasing argon gas flowrate. Raising the casting speed from 1.2m/min to 2.2m/min leads to the deeper penetration of bubbles and less influence of argon bubbles on the flow pattern and interfacial profile with a given argon gas flowrate. Increasing the submergence depth of SEN can effectively restrain interfacial oscillations in mold, while mold width has little effect on it. Bubble size has a remarkable influence on the interfacial behavior of molten steel and slag in mold.
Key wordscontinuous casting    mold    blowing argon gas    steel/slag interfacial behavior    numerical simulation
收稿日期: 2007-07-03     
ZTFLH:  TF777.1  
[1]Zhang J M,He J C,Li B K.Acta Metall Sin,1995;31: 269 (张炯明,赫冀成,李宝宽.金属学报,1995;31:269)
[2]Ma F J,Wen G H,Li G.Steelmaking,2000;16(3):42 (马范军,文光华,李刚.炼钢,2000;16(3):42)
[3]Yu H X,Zhu G S,Wang X H,Zhang J M,Wang W J.J Univ Sci Technol Beijing,2003;25:215 (于会香,朱国森,王新华,张炯明,王万军.北京科技大学学报,2003;25:215)
[4]Thomas B G,Huang X,Sussman R C.Metall Mater Trans,1994;25B:527
[5]Iguchi M,Kasai N.Metall Mater Trans,2000;31B:453
[6]Noriko K,Toshio I,Jun K,Norichika A.ISIJ Int,2002; 42:1251
[7]Singh V,Dash S K,Sunitha J S,Ajmani S K,Das A K. ISIJ Int,2006;46:210
[8]Hua B,Thomas B G.Metall Mater Trans,2001;32B:1143
[9]Sanchez-Perez R,Morales R D,Garcia-Demedices L, Palafox R J,Diaz-Cruz M.Metall Mater Trans,2004; 35B:85
[10]Kasai N,Iguchi M.Tetsu Hagané,2005;91:546 (笠井宣文,井口学.铁钢,2005;91:546)
[11]Zhang Y L,Zhu M Y,Zhang S J,Zheng S G,Cheng N L, Song J X.Spec Steel,2006;27(5):27 (张永亮,朱苗勇,张胜军,郑淑国,程乃良,宋景欣.特殊钢,2006;27(5):27)
[12]Lu J X,Wang W K,Zhang J M,Wang X H,Wang W J, Qie F.J Univ Sci Technol Beijing,2006;28:34 (卢金雄,王文科,张炯明,王新华,王万军,郄芳.北京科技大学学报,2006;28:34)
[13]Lu Q T,Yang R G,Wang X H,Zhang J M,Wang W J Iron Steel,2006;41(7):29 (陆巧彤,杨荣光,王新华,张炯明,王万军.钢铁,2006;41(7):29)
[14]Zhang S J,Zhu M Y,Zhang Y L,Zheng S G,Cheng N L, Song J X.Acta Metall Sin,2006;42:1087 (张胜军,朱苗勇,张永亮,郑淑国,程乃良,宋景欣.金属学报,2006;42:1087)
[15]Yamashita S,Iguchi M.ISIJ Int,2001;41:1529
[16]Cao N,Zhu M Y.Acta Metall Sin,2007;43:834 (曹娜,朱苗勇.金属学报,2007;43:834)
[17]CD-Adapco.STAR-CD Methodology,Version 3.10,Lon- don:Computational Dynamics Limited,1999
[18]Assar M B,Dauby P H,Lawson G D.In:Steelmaking Division of Iron and Steel Society Proceedings,USA,ed., 83rd Steelmaking Conference,Warrendale,PA:Iron and Steel Society,2000:397W
[1] 彭治强, 柳前, 郭东伟, 曾子航, 曹江海, 侯自兵. 基于大数据挖掘的连铸结晶器传热独立变化规律[J]. 金属学报, 2023, 59(10): 1389-1400.
[2] 郭东伟, 郭坤辉, 张福利, 张飞, 曹江海, 侯自兵. 基于二次枝晶间距变化特征的连铸方坯CET位置判断新方法[J]. 金属学报, 2022, 58(6): 827-836.
[3] 李民, 李昊泽, 王继杰, 马颖澈, 刘奎. 稀土Ce对薄带连铸无取向6.5%Si钢组织、高温拉伸性能和断裂模式的影响[J]. 金属学报, 2022, 58(5): 637-648.
[4] 刘中秋, 李宝宽, 肖丽俊, 干勇. 连铸结晶器内高温熔体多相流模型化研究进展[J]. 金属学报, 2022, 58(10): 1236-1252.
[5] 郭中傲, 彭治强, 柳前, 侯自兵. 高碳钢连铸坯大区域C元素分布不均匀度[J]. 金属学报, 2021, 57(12): 1595-1606.
[6] 唐海燕, 刘锦文, 王凯民, 肖红, 李爱武, 张家泉. 连铸中间包加热技术及其冶金功能研究进展[J]. 金属学报, 2021, 57(10): 1229-1245.
[7] 蔡来强, 王旭东, 姚曼, 刘宇. 连铸圆坯非均匀传热/凝固行为的无网格计算方法[J]. 金属学报, 2020, 56(8): 1165-1174.
[8] 任忠鸣,雷作胜,李传军,玄伟东,钟云波,李喜. 电磁冶金技术研究新进展[J]. 金属学报, 2020, 56(4): 583-600.
[9] 李亚强, 刘建华, 邓振强, 仇圣桃, 张佩, 郑桂芸. 15CrMoG钢包晶凝固特征与机制[J]. 金属学报, 2020, 56(10): 1335-1342.
[10] 吴春雷,李德伟,朱晓伟,王强. 电磁旋流水口连铸技术对小方坯凝固组织形貌和宏观偏析的影响[J]. 金属学报, 2019, 55(7): 875-884.
[11] 郭军力, 文光华, 符姣姣, 唐萍, 侯自兵, 谷少鹏. 冷却速率对包晶钢凝固过程中包晶转变收缩的影响[J]. 金属学报, 2019, 55(10): 1311-1318.
[12] 侯自兵, 徐瑞, 常毅, 曹江海, 文光华, 唐萍. 高碳钢连铸方坯拉坯方向偏析C元素分布的时间序列波动特征[J]. 金属学报, 2018, 54(6): 851-858.
[13] 刘新华, 付华栋, 何兴群, 付新彤, 江燕青, 谢建新. Cu-Al复合材料连铸直接成形数值模拟研究[J]. 金属学报, 2018, 54(3): 470-484.
[14] 朱苗勇, 娄文涛, 王卫领. 炼钢与连铸过程数值模拟研究进展[J]. 金属学报, 2018, 54(2): 131-150.
[15] 王强, 何明, 朱晓伟, 李显亮, 吴春雷, 董书琳, 刘铁. 电磁场技术在冶金领域应用的数值模拟研究进展[J]. 金属学报, 2018, 54(2): 228-246.